設(shè)是兩條不同直線,是兩個不同的平面,下列命題正確的是(     )
A.B.,則
C.,則D.,則
B

試題分析:互為異面直線,所以,A不正確;
,則,B正確;
、相交,即C不正確;
相交,如均平行于的交線時,故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的四棱錐中,底面為菱形,平面 的中點,

求證:(I)平面; (II)平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐中,底面四邊形是菱形,,是邊長為2的等邊三角形,,.

(Ⅰ)求證:底面;
(Ⅱ)求直線與平面所成角的大小;
(Ⅲ)在線段上是否存在一點,使得∥平面?如果存在,求的值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在長方體中,,, E、 分別為的中點.

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°.

(1)求證:BD⊥PC;
(2)設(shè)E為PC的中點,點F在線段AB上,若直線EF∥平面PAD,求AF的長;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一個斜三棱柱,已知、平面平面、,又、分別是、的中點.

(1)求證:∥平面; (2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是兩條不重合的直線,是兩個不重合的平面,給出下列命題:
①若,且,則;
②若,,且,則
③若,,且,則;
④若,且,則.
其中正確命題的個數(shù)是(   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,錯誤的是 (      )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交
B.平行于同一平面的兩個不同平面平行
C.如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
D.若直線不平行平面,則在平面內(nèi)不存在與平行的直線

查看答案和解析>>

同步練習(xí)冊答案