在長(zhǎng)方體中,,, E、 分別為、的中點(diǎn).

(1)求證:平面;
(2)求證:平面
(1)參考解析;(2)參考解析

試題分析:(1)線面垂直的證明關(guān)鍵是要找到平面內(nèi)兩條相交直線與該直線平行.其中BC⊥DF較易,在通過所給的條件說明DF⊥FC.即可得所要證的結(jié)論.
(2)連結(jié)AC與DB交于點(diǎn)O.通過直線可得四邊形EAOF為平行四邊形所以可得AE//OF即可證得直線以平面的平行.本小題主要就是考查線面的關(guān)系,通過相應(yīng)的判斷定理,結(jié)合具體的圖形即可得到所求的結(jié)論.
試題解析:在長(zhǎng)方體中,,、 分別為、的中點(diǎn).
(1)證:∵BC⊥面DCC1D1.∴BC⊥DF.∵矩形DCC1D1中,DC=2a,DD1=CC1=a.∴DF=FC=∴DF2+FC2=DC2
∴DF⊥FC.∵BC∩FC=C.∴DF⊥面BCF
(2) 證:連結(jié)AC交BD于O,連結(jié)FO,EF .∵.∴.∴四邊形EAOF為平行四邊形
∴AE//OF. ∵AE面BDF. OF面BD.∴AE//面BDF
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分別為PC,PB的中點(diǎn).

(Ⅰ)求證:PB⊥DM;
(Ⅱ)求點(diǎn)B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,長(zhǎng)方體中,,點(diǎn)的中點(diǎn).

(1)求證:直線平面;
(2)求證:平面平面;
(3)求與平面所成的角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于、的點(diǎn),設(shè)正方形的邊長(zhǎng)為,且.

(1)求證:平面平面
(2)若異面直線所成的角為,與底面所成角為,二面角所成角為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,.

(1)求證:平面PAC;
(2)若,求所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時(shí),求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是兩條不同直線,是兩個(gè)不同的平面,下列命題正確的是(     )
A.B.,則
C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中假命題是(     )
A.垂直于同一條直線的兩條直線相互垂直
B.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行
C.若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直
D.若一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的相交直線分別平行,那么這兩個(gè)平面相互平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知下列四個(gè)命題,其中真命題的序號(hào)是(    )
① 若一條直線垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線,則這條直線與這個(gè)平面垂直;
② 若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;
③ 若一條直線平行一個(gè)平面,另一條直線垂直這個(gè)平面,則這兩條直線垂直;
④ 若兩條直線垂直,則過其中一條直線有唯一一個(gè)平面與另外一條直線垂直;
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為直線,是兩個(gè)不同的平面,下列命題中正確的是(  )
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

同步練習(xí)冊(cè)答案