已知函數(shù)f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x
(1)求a的值;
(2)求g(x)的表達(dá)式;
(3)當(dāng)x∈[-1,1]時,g(x)的值域并判斷g(x)的單調(diào)性.
分析:(1)欲求a的值,根據(jù)f-1(18)=a+2,只要即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,求得反函數(shù)的解析式即可.
(2)由(1)求得的a值直接代入g(x)=3ax-4x欲即得g(x)的表達(dá)式;
(3)令u=2x,將g(x)的值域、單調(diào)性問題轉(zhuǎn)化為二次函數(shù)u-u2的值域、單調(diào)性解決即可.
解答:解:(1)f
-1(x)=log
3x,log
318=a+2,
∴a=log
32.
(2)g(x)=(3
a)
x-4
x=(3
log32)
x-4
x=2
x-4
x.
(3)令u=2
x,
∵-1≤x≤1,則
≤u≤2,
g(x)=φ(u)=u-u
2=-(u-
)
2+
,
當(dāng)u=
時,φ(u)
max=
,當(dāng)u=2時,φ(u)
min=-2.
∴g(x)的值域?yàn)閇-2,
],
當(dāng)-1≤x≤1時,
≤u≤2,φ(u)為減函數(shù),而u=2
x為增函數(shù),
g(x)在[-1,1]上為減函數(shù).
點(diǎn)評:本題考查反函數(shù)的求法及函數(shù)單調(diào)性的判斷,屬于基礎(chǔ)題目,要會求一些簡單函數(shù)的值域及單調(diào)性判斷,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系.