【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).
(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;
(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
【答案】(1)見(jiàn)解析(2)
【解析】
(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.
(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.
(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).
理由如下:取的中點(diǎn),連結(jié)、,由題意,且,
且,故且.所以,四邊形為平行四邊形.
所以,,又平面,平面,所以,平面.
(Ⅱ)由題意知為正三角形,所以,亦即,
又,所以,且平面平面,平面平面,
所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,
設(shè),則由題意知,,,,
,,
設(shè)平面的法向量為,
則由得,令,則,,
所以取,顯然可取平面的法向量,
由題意:,所以.
由于平面,所以在平面內(nèi)的射影為,
所以為直線與平面所成的角,
易知在中,,從而,
所以直線與平面所成的角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在(-1,1)上有定義,當(dāng)且僅當(dāng)0<x<1時(shí)f(x)<0,且對(duì)任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明
(1)f(x)為奇函數(shù);(2)f(x)在(-1,1)上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于利用斜二側(cè)法得到的直觀圖有下列結(jié)論:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③正方形的直觀圖是正方形;④菱形的直觀圖是菱形,以上結(jié)論正確的是( )
A. ①② B. ① C. ③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有一分鹿問(wèn)題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問(wèn)各得幾何.”在這個(gè)問(wèn)題中,大夫、不更、簪裊、上造、公士是古代五個(gè)不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成3組派去三地執(zhí)行公務(wù)(每地至少去1人),則不同的方案有( )種.
A.150B.180C.240D.300
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=f(x),若在其定義域內(nèi)存在x0,使得x0f(x0)=1成立,則稱函數(shù)f(x)具有性質(zhì)M.
(1)下列函數(shù)中具有性質(zhì)M的有____
①f(x)=﹣x+2
②f(x)=sinx(x∈[0,2π])
③f(x)=x,(x∈(0,+∞))
④f(x)
(2)若函數(shù)f(x)=a(|x﹣2|﹣1)(x∈[﹣1,+∞))具有性質(zhì)M,則實(shí)數(shù)a的取值范圍是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年中秋季到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷(xiāo)售量,對(duì)其所在銷(xiāo)售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買(mǎi)量(單位:)進(jìn)行了問(wèn)卷調(diào)查,得到如下頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)已知該超市所在銷(xiāo)售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷(xiāo)售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)人均月餅購(gòu)買(mǎi)量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求?
(3)由頻率分布直方圖可以認(rèn)為,該銷(xiāo)售范圍內(nèi)消費(fèi)者的月餅購(gòu)買(mǎi)量服從正態(tài)分布,其中樣本平均數(shù)作為的估計(jì)值,樣本標(biāo)準(zhǔn)差作為的估計(jì)值,設(shè)表示從該銷(xiāo)售范圍內(nèi)的消費(fèi)者中隨機(jī)抽取10名,其月餅購(gòu)買(mǎi)量位于的人數(shù),求的數(shù)學(xué)期望.
附:經(jīng)計(jì)算得,若隨機(jī)變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)應(yīng)用軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下:
(1)試估計(jì)使用A款訂餐軟件的50個(gè)商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問(wèn)題:
①能否認(rèn)為使用B款訂餐軟件“平均送達(dá)時(shí)間”不超過(guò)40分的商家達(dá)到75%?
②如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com