【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.
【答案】(I). (II)
【解析】
試題分析:解:(I)從五張卡片中任取兩張的所有可能情況有如下10種:
紅1紅2,紅1紅3,紅1藍(lán)1,紅1藍(lán)2,紅2紅3,紅2藍(lán)1,
紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2,藍(lán)1藍(lán)2.
其中兩張卡片的顏色不同且標(biāo)號之和小于4的有3種情況,故
所求的概率為.
(II)加入一張標(biāo)號為0的綠色卡片后,從六張卡片中任取兩張,除上面的10種情況外,
多出5種情況:紅1綠0,紅2綠0,紅3綠0,藍(lán)1綠0,藍(lán)2綠0,即共有15種情況,
其中顏色不同且標(biāo)號之和小于4的有8種情況,
所以概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.
(1) 求f(x)的解析式;
(2) 設(shè), 若|g(x)|-af(x)+a≥0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦..曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,如圖是按照一定的分形規(guī)律生產(chǎn)成一個數(shù)形圖,則第13行的實(shí)心圓點(diǎn)的個數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點(diǎn)的概率;
(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭天的日用水量頻數(shù)分布表
日用水量 | |||||||
頻數(shù) |
使用了節(jié)水龍頭天的日用水量頻數(shù)分布表
日用水量 | ||||||
頻數(shù) |
(Ⅰ)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點(diǎn).
(1)求異面直線EF,AD所成角的余弦值;
(2)點(diǎn)M在線段A1D上, =λ.若CM∥平面AEF,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?
(參考:用最小二乘法求線性回歸方程系數(shù)公式,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達(dá)幾天?
(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑 個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com