【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 設, 若|g(x)|-af(x)+a≥0,求實數(shù)a的取值范圍.

【答案】(1) f(x)=x+1.

(2) a≤0.

【解析】分析:(1)待定系數(shù)法即可求得f(x)的解析式;

(2)分類討論、分離參數(shù)、數(shù)形結合都可以解決.

詳解:(1)設f(x)=kx+b,則

解得:k=b=1,f(x)=x+1.

(2) 由(1)得:g(x)=|g(x)|-af(x)+a≥0可化為|g(x)|≥ax.

∵|g(x)|=∴由|g(x)|≥ax可分兩種情況:

(I)恒成立

x=0,不等式顯然成立;

x<0時,不等式等價于x-2≤a.

x-2<-2,∴a≥-2.

(II)恒成立

方法一[分離參數(shù)]:可化為a在(0, +∞)上恒成立。

h(x)=,h′(x)= =

t(x)=x-(x+1)ln(x+1), 則由t′(x)=-ln(x+1)<0知t(x)在(0, +∞)上單調(diào)遞減,

t(x)<t(0)=0,于是h′(x)<0

從而h(x)在(0, +∞)上單調(diào)遞減

又當x>0時,恒有h(x)= >0

于是a≤0.

方法二[分類討論]:ln(x+1)≥axln(x+1)-ax≥0

φ(x)= ln(x+1)-ax,則φ′(x)=a=

a≤0時, φ(x)在(0,+∞)上單調(diào)遞增,故有φ(x)> φ(0)=0成立;

當0<a<1時, φ(x)在(0,-1)上單調(diào)遞增, 在(-1+∞)是遞減.

x=-1, 易知φ(-1)=-2lna+a<0,故不合題意;

a≥1時, φ(x)在(0,+∞)上單調(diào)遞減,顯然不合題意。

所以a≤0.

方法三[數(shù)形結合]:

根據(jù)函數(shù)圖象可知a≤0.

綜合(1)(2)得-2≤a≤0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一微商店對某種產(chǎn)品每天的銷售量(件)進行為期一個月的數(shù)據(jù)統(tǒng)計分析,并得出了該月銷售量的直方圖(一個月按30天計算)如圖所示.假設用直方圖中所得的頻率來估計相應事件發(fā)生的概率.

(1)求頻率分布直方圖中的值;

(2)求日銷量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)若微商在一天的銷售量超過25件(包括25件),則上級商企會給微商贈送100元的禮金,估計該微商在一年內(nèi)獲得的禮金數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結論中不正確的是( )

A. 2018年1月至4月的倉儲指數(shù)比2017年同期波動性更大

B. 2017年、2018年的最大倉儲指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉儲指數(shù)平均值明顯低于2017年

D. 2018年各月倉儲指數(shù)的中位數(shù)與2017年各月倉儲指數(shù)中位數(shù)差異明顯

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解開展校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5“不合格”記0分.現(xiàn)隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

頻數(shù)

6

a

24

b

(1)a,b,c的值;

(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談再從這10人中任選4,記所選4人的量化總分為ξ,ξ的分布列及數(shù)學期望E(ξ);

(3)某評估機構以指標,其中表示的方差)來評估該校開展安全教育活動的成效.若0.7,則認定教育活動是有效的;否則認定教育活動無效應調(diào)整安全教育方案.在(2)的條件下,判斷該校是否應調(diào)整安全教育方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖梯形ABCD中,ADBC,∠ABC=90°,ADBCAB=2∶3∶4,EF分別是AB,CD的中點,將四邊形ADFE沿直線EF進行翻折,給出四個結論:①DFBC;

BDFC;

③平面DBF⊥平面BFC;

④平面DCF⊥平面BFC.

則在翻折過程中,可能成立的結論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域為R,求實數(shù)m的取值范圍;
(2)若存在實數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中)的圖象與軸的交點中,相鄰兩個交點之間的距離為, 且圖象上一個最低點為.

(1) 求函數(shù)的最小正周期和對稱中心;

(2) 將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的,再把所得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,23;藍色卡片兩張,標號分別為1,2.

(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;

(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

查看答案和解析>>

同步練習冊答案