已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
考點:直線與圓錐曲線的綜合問題,橢圓的標(biāo)準(zhǔn)方程,橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)求出過點A(0,-b)  和B(a,0)的直線,利用直線L與坐標(biāo)原點的距離為
3
2
,橢圓的離心率
6
3
,建立方程,求出橢圓的幾何量,即可求得橢圓的方程;
(2)直線y=kx+2代入橢圓方程,利用韋達定理及CD為圓心的圓過點E,利用數(shù)量積為0,即可求得結(jié)論.
解答: 解:(1)∵直線過點A(0,-b)和B(a,0),
∴直線L:
x
a
-
y
b
=1
與坐標(biāo)原點的距離為
3
2
,∴
3
2
=
|ab|
a2+b2
.①…(2分)
∵橢圓的離心率 e=
6
3
,∴
c2
a2
=
2
3
.②…(4分)
由①得4a2b2=3a2+3b2,即4a2(a2-c2)=3a2+3(a2-c2)③
由②③得a2=3,c2=2
∴b2=a2-c2=1
∴所求橢圓的方程是
x2
3
+y2=1…(6分)
(2)直線y=kx+2代入橢圓方程,消去y可得:(1+3k2)x2+12kx+9=0
∴△=36k2-36>0,∴k>1或k<-1…(8分)
設(shè)C(x1,y1),D(x2,y2),則有x1+x2=
-12k
1+3k2
,x1x2=
9
1+3k2
…(10分)
EC
=(x1+1,y1),
ED
=(x2+1,y2),且以CD為圓心的圓過點E,
∴EC⊥ED…(12分)
∴(x1+1)(x2+1)+y1y2=0
∴(1+k2)x1x2+(2k+1)(x1+x2)+5=0
∴(1+k2)×
9
1+3k2
+(2k+1)×
-12k
1+3k2
+5=0,解得k=
7
6
>1,
∴當(dāng)k=
7
6
時以CD為直徑的圓過定點E…(14分)
點評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,考查韋達定理的運用,考查向量知識,解題的關(guān)鍵是聯(lián)立方程,利用韋達定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,F(xiàn)是拋物線E:y2=4x的焦點.
(Ⅰ)過F作直線l交拋物線E于P,Q兩點,求
OP
OQ
的值;
(Ⅱ)過點T(t,0)作兩條互相垂直的直線分別交拋物線E于A,B,C,D四點,且M,N分別為線段AB,CD的中點,求△TMN的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點A的坐標(biāo)是(0,-1),且右焦點Q到直線x-y+2
2
=0的距離為3.
(1)求橢圓方程;
(2)試問是否存在斜率為k(k≠0)的直線l,使l與橢圓M有兩個不同的交點B、C,且|AB|=|AC|?若存在,求出k的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等邊△ABC的邊長為1,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
2
CA
,則
MA
MB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)
,
(1)若橢圓C的上頂點為A,右焦點為F,直線AF與圓M:(x-3)2+(y-1)2=3相切,求橢圓C的方程.
(2)若Rt△ABC以A(0,1)為直角頂點,邊AB,BC與橢圓交于兩點B,C,求Rt△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若A,B是銳角△ABC的兩內(nèi)角,則有sinA>cosB;
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為2個;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tan α的值為-
23
16

④存在實數(shù)x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,則
sin2x
x2
sinx
x

其中正確的命題為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x+|x-1|≤a無解,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
2
2
+
C
2
3
+…+
C
2
10
=
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i•z=1-i(i為虛數(shù)單位),則z=( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

同步練習(xí)冊答案