3.直線的斜率為-2且與圓x2+y2=5相切的直線方程是(  )
A.2x-y+5=0或2x-y-5=0B.2x+y+5=0或2x+y-5=0
C.$2x-y+\sqrt{5}=0$或$2x+y-\sqrt{5}=0$D.$2x-y+\sqrt{5}=0$或$2x-y-\sqrt{5}=0$

分析 利用直線的斜率為-2設(shè)出直線方程,根據(jù)直線相切的等價條件建立方程關(guān)系即可.

解答 解:設(shè)直線的斜率為-2為2x+y+c=0,
當(dāng)直線和圓相切時,滿足圓心到直線的距離d=$\frac{|c|}{\sqrt{4+1}}$=$\sqrt{5}$
即|c|=5,解得c=±5,
故所求的直線方程為2x+y+5=0或2x+y-5=0
故選B.

點(diǎn)評 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)相切的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=-x2-6x-5的值域為( 。
A.[0,4]B.(-∞,4]C.(-∞,4)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中,真命題是( 。
A.?x∈R,2x>x2
B.a+b=0的充要條件是$\frac{a}=-1$
C.$?{x_0}∈R,{e^{x_0}}≤0$
D.若x,y∈R,且x+y>2,則x,y至少有一個大于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的程序框圖運(yùn)行的結(jié)果是(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2014}{2013}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$f(x)=\left\{{\begin{array}{l}{{{log}_3}(x-8)(x≥9)}\\{f(x+6)(x<9)}\end{array}}\right.$,則f(5)的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<|φ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,cos$({\frac{π}{4}+A})=\frac{5}{13}$,則cos2A=$\frac{120}{169}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線2x-3y=6在x軸上的截距為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某市甲、乙兩校高二級學(xué)生分別有1100人和1000人,為了解兩校全體高二級學(xué)生期 末統(tǒng)考的數(shù)學(xué)成績情況,采用分層抽樣方法從這兩所學(xué)校共抽取105名高二學(xué)生的數(shù)學(xué) 成績,并得到成績頻數(shù)分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
頻數(shù)12981010y3
(1)求表中x與y的值;
(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,問是否有99%的把握認(rèn)為學(xué)生數(shù)學(xué)成績優(yōu)秀與所在學(xué)校有關(guān)?
(3)若以樣本的頻率作為概率,現(xiàn)從乙?傮w中任取3人(每次抽取看作是獨(dú)立重復(fù)的),求優(yōu)秀學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
 P(K2≥k) 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k2.072 2.706 3.841 5.024 6.635 7.879 10.828 
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
  甲校 乙校 總計
 優(yōu)秀   
 非優(yōu)秀   
 總計   

查看答案和解析>>

同步練習(xí)冊答案