16.函數(shù)y=-x2-6x-5的值域為( 。
A.[0,4]B.(-∞,4]C.(-∞,4)D.[4,+∞)

分析 利用二次函數(shù)的圖象和性質(zhì)求解即可.

解答 解:∵函數(shù)y=-x2-6x-5=-(x+3)2+4,
根據(jù)二次函數(shù)的圖象和性質(zhì),可知:
函數(shù)y開口向下,當(dāng)x=-3時,函數(shù)取得最大值為4.
故得函數(shù)y=-x2-6x-5的值域為(-∞,4],
故選:B.

點評 本題考查了二次函數(shù)的圖象和性質(zhì)的運用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x,y>0且x+y=1,則xy的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a>b>0,0<c<1,則( 。
A.ac<bcB.abc<bacC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3),左、右焦點分別為F1,F(xiàn)2,過F1的直線交橢圓于兩點A,B,若|BF2|+|AF2|的最大值為8,則b的值是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)正項等比數(shù)列{an}的前n項的和為Sn,且$\frac{{a}_{n+1}}{{a}_{n}}$<1,若a3+a5=20,a2•a6=64,則S6=(  )
A.63或126B.252C.126D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各組數(shù)的大小比較正確的是( 。
A.2${\;}^{\frac{1}{2}}$<($\frac{1}{2}$)3B.($\frac{3}{4}$)${\;}^{-\frac{1}{2}}$>($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$
C.53.1<33.1D.0.3${\;}^{-\frac{1}{5}}$>0.3${\;}^{-\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.比較下列各題中兩個數(shù)的大。
(1)log60.8,log69.1;                       
(2)log0.17,log0.19;
(3)log0.15,log2.35                        
(4)loga4,loga6(a>0,且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={-2,-1,0,1},B={0,1,2},則A∩B=(  )
A.{0,1}B.{0,1,-1}C.{-2,-1,0,1,2}D.{-2,-1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線的斜率為-2且與圓x2+y2=5相切的直線方程是( 。
A.2x-y+5=0或2x-y-5=0B.2x+y+5=0或2x+y-5=0
C.$2x-y+\sqrt{5}=0$或$2x+y-\sqrt{5}=0$D.$2x-y+\sqrt{5}=0$或$2x-y-\sqrt{5}=0$

查看答案和解析>>

同步練習(xí)冊答案