【題目】已知點及圓.

(1)設(shè)過點的直線與圓交于兩點,當(dāng)時,求以線段為直徑的圓的方程;

(2)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

【答案】(1) (2)不存在實數(shù),使得過點的直線垂直平分弦

【解析】試題分析:(1)由利用兩點間的距離公式求出圓心CP的距離,再根據(jù)弦長|MN|的一半及半徑,利用勾股定理求出弦心距d,發(fā)現(xiàn)|CP|與d相等,所以得到PMN的中點,所以以MN為直徑的圓的圓心坐標(biāo)即為P的坐標(biāo),半徑為|MN|的一半,根據(jù)圓心和半徑寫出圓的方程即可;(2)把已知直線的方程代入到圓的方程中消去y得到關(guān)于x的一元二次方程,因為直線與圓有兩個交點,所以得到△>0,列出關(guān)于a的不等式,求出不等式的解集即可得到a的取值范圍,利用反證法證明證明即可

試題解析:

Ⅰ)由于圓的圓心,半徑為 ,而弦心距

所以,所以的中點,

所以所求圓的圓心坐標(biāo)為,半徑為,

故以為直徑的圓的方程為:

Ⅱ)把直線代入圓的方程,消去,整理得:

,

由于直線交圓, 兩點,

,即,解得

則實數(shù)的取值范圍是

設(shè)符合條件的實數(shù)存在,

由于垂直平分弦,故圓心必在直線上,

所以的斜率,所以,

由于,

故不存在實數(shù),使得過點的直線垂直平分弦

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)求曲線 在點 處的切線方程;
(Ⅱ)若 恒成立,求實數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面是邊長為1的正方形,側(cè)棱底面,且, 是側(cè)棱上的動點.

(1)求四棱錐的表面積;

(2)是否在棱上存在一點,使得平面;若存在,指出點的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在不為零的常數(shù),使得函數(shù)對定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個周期.

(1)證明:若存在不為零的常數(shù)使得函數(shù) 對定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù).

(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間

內(nèi)零點的最少個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=(m2+5m﹣6)+(m2﹣2m﹣15)i,(i為虛數(shù)單位,m∈R)
(1)若復(fù)數(shù)Z在復(fù)平面內(nèi)對應(yīng)的點位于第一、三象限的角平分線上,求實數(shù)M的值;
(2)當(dāng)實數(shù)m=﹣1時,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)=ax2+2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞增的,則實數(shù)a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面該四棱錐的正視圖和側(cè)視圖均為腰長為6的等腰直角三角形.

(1)畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;

(2)求證: ;

(3)求四棱錐外接球的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:

調(diào)查統(tǒng)計

不喜歡語文

喜歡語文

13

10

7

20

為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值k= ≈4.844,因為k≥3.841,根據(jù)下表中的參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯的可能性為(
A.95%
B.50%
C.25%
D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )

A. 每個點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位

B. 每個點的橫坐標(biāo)縮短到原來的2倍(縱坐標(biāo)不變),再向左平移個單位

C. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)

D. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的(縱坐標(biāo)不變)

查看答案和解析>>

同步練習(xí)冊答案