【題目】若存在不為零的常數(shù),使得函數(shù)對定義域內的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個周期.

(1)證明:若存在不為零的常數(shù)使得函數(shù) 對定義域內的任一均有,則此函數(shù)是周期函數(shù).

(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間

內零點的最少個數(shù).

【答案】(1)證明見解析;(2)4035.

【解析】試題分析:

1)根據所給出的周期函數(shù)的定義證明即可,由題意可得 ,從而可得結論。(2由條件可得函數(shù)的周期為2,,,根據題意得,,從而可得 ,在此基礎上可得函數(shù)零點的最少個數(shù)。

試題解析

1)證明:∵,

,

∴函數(shù)是周期函數(shù),且是函數(shù)的一個周期.

2)解:∵,

1可知函數(shù)是周期函數(shù),且是函數(shù)的一個周期,

又函數(shù)上的奇函數(shù),

……①

,

……②

①② .

,

∴函數(shù)在區(qū)間內的零點最少有。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點 處的切線方程;
(2)當 時,求證: ;
(3)若 對任意的 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若 ,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)沒有零點,求得取值范圍;

(3)若函數(shù), 的最小值為0,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是圓的直徑, 垂直圓所在的平面, 是圓上的點.

(1)求證: 平面

(2)設的中點, 的重心,求證: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在面體中,四邊形是邊長為的正方形,平面,,,.

(1)求證:平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點及圓.

(1)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;

(2)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)判斷并證明函數(shù)的單調性;
(2)求此函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在經濟學中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多

生產100件.生產x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.

(1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);

(2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;

(3)你認為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?

查看答案和解析>>

同步練習冊答案