【題目】若存在不為零的常數(shù),使得函數(shù)對定義域內的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個周期.
(1)證明:若存在不為零的常數(shù)使得函數(shù) 對定義域內的任一均有,則此函數(shù)是周期函數(shù).
(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間
內零點的最少個數(shù).
【答案】(1)證明見解析;(2)4035.
【解析】試題分析:
(1)根據所給出的周期函數(shù)的定義證明即可,由題意可得 ,從而可得結論。(2)由條件可得函數(shù)的周期為2,故,又,故;根據題意得,故,從而可得 ,在此基礎上可得函數(shù)零點的最少個數(shù)。
試題解析:
(1)證明:∵,
∴
即,
∴函數(shù)是周期函數(shù),且是函數(shù)的一個周期.
(2)解:∵,
由(1)可知函數(shù)是周期函數(shù),且是函數(shù)的一個周期,
即,
又函數(shù)是上的奇函數(shù),
∴。
∴ ……①
又,
∴,
∴ ……②
由①②有 .
又,
∴函數(shù)在區(qū)間內的零點最少有個。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點 處的切線方程;
(2)當 時,求證: ;
(3)若 對任意的 恒成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)沒有零點,求得取值范圍;
(3)若函數(shù), 的最小值為0,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點及圓.
(1)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;
(2)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在經濟學中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)﹣f(x).已知某服裝公司每天最多
生產100件.生產x件的收入函數(shù)為R(x)=300x﹣2x2(單位元),其成本函數(shù)為C(x)=50x+300(單位:元),利潤等于收入與成本之差.
(1)求出利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x);
(2)分別求利潤函數(shù)p(x)及其邊際利潤函數(shù)Mp(x)的最大值;
(3)你認為本題中邊際利潤函數(shù)Mp(x)最大值的實際意義是什么?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com