【題目】關(guān)于x的不等式組的解集為A,若集合A中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.

【答案】3,4]∪[﹣3,2

【解析】

首先解不等式組,討論的大小,根據(jù)題意對(duì)進(jìn)行取值求解即可.

解不等式x2x20x<﹣1x2

解方程2x2+(2k+5x+5k=0x1=﹣,x2=﹣k

若﹣kk時(shí),不等式2x2+(2k+5x+5k0的解為﹣kx<﹣,

此時(shí)不等式組的解集為A=(﹣k,﹣),

∵集合A中有且僅有一個(gè)整數(shù),∴﹣4≤﹣k<﹣3,解得3k4

若﹣k>﹣k時(shí),不等式2x2+(2k+5x+5k0的解為﹣x<﹣k,

此時(shí)不等式組的解集為A=(﹣,﹣k),

A=(﹣,﹣1)或A=(﹣,﹣1)∪(2,﹣k),

∵集合A中有且僅有一個(gè)整數(shù),∴﹣2<﹣k3,解得﹣3k2

綜上,k的取值范圍是(34]∪[﹣3,2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,集合.

(1)若“”是“”的必要條件,求實(shí)數(shù)的取值范圍;

(2)若中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在古代三國時(shí)期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間空出一個(gè)小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內(nèi)隨機(jī)投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且過點(diǎn)(44),焦點(diǎn)為F

1)求拋物線的焦點(diǎn)坐標(biāo)和標(biāo)準(zhǔn)方程;

2P是拋物線上一動(dòng)點(diǎn),MPF的中點(diǎn),求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)都有是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)負(fù)整數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將標(biāo)號(hào)為1,2,…,20的20張卡片放入下列表格中,一個(gè)格放入一張卡片,選出每列標(biāo)號(hào)最小的卡片,將這些卡片中標(biāo)號(hào)最大的數(shù)設(shè)為;選出每行標(biāo)號(hào)最大的卡片,將這些卡片中標(biāo)號(hào)最小的數(shù)設(shè)為

甲同學(xué)認(rèn)為有可能比大,乙同學(xué)認(rèn)為有可能相等,那么甲乙兩位同學(xué)的說法中(

A. 甲對(duì)乙不對(duì) B. 乙對(duì)甲不對(duì) C. 甲乙都對(duì) D. 甲乙都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面;

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案