【題目】設函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)如果不等式對于一切的恒成立,求的取值范圍;
(3)證明:不等式對于一切的恒成立.
【答案】(1)(2)(3)見解析
【解析】分析:(1)先求一階導函數(shù),,用點斜式寫出切線方程。
(2)分離變量,,構建函數(shù),轉化為求函數(shù)的最大值
(3)構建函數(shù),證明的最小值大于0.
解:(1)當時,,則,故,所以曲線在點處的切線方程為:;
(2)因為,所以恒成立,等價于恒成立.
設,得,
當時,,所以 在上單調遞減,
所以 時,.
因為 恒成立,所以的取值范圍是;
(3)當時,,等價于.
設,,得.
由(2)可知,時,恒成立.
所以時,,有,所以.
所以在上單調遞增,當時,.
因此當時,恒成立
分析:(1)利用導數(shù)求在某點切線方程利用,即可。
(2)已知不等式的恒成立,求解參數(shù)的取值范圍,分離變量,轉化為求函數(shù)的最值問題。
(3)證明不等式恒成立問題,構建函數(shù),證明的最小值大于0.
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名髙一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(I)從乙班隨機抽取2名學生的成績,記“成績優(yōu)秀”的個數(shù)為,求的分布列和數(shù)學期望;
(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認為:“成績優(yōu)秀”與教學方式有關.
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x+y)=f(x)+f(y)且當x>0,f(x)<0.
給出下列四個結論:
①f(0)=0; ②f(x)為偶函數(shù);
③f(x)為R上減函數(shù); ④f(x)為R上增函數(shù).
其中正確的結論是( 。
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標系中,直線與直線之間的陰影部分即為,區(qū)域中動點到的距離之積為1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)動直線穿過區(qū)域,分別交直線于兩點,若直線與軌跡有且只有一個公共點,求證: 的面積恒為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(2)中所確定的s關于t的函數(shù)為s=g(t),證明:當t>e2時,有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個零點,求實數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時,不等式f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線交曲線于,兩點.
(Ⅰ)寫出直線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設點的直角坐標為,求點到,兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,首項a1=1,且a3+1是a2+1與a4+2的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com