【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線交曲線于,兩點.
(Ⅰ)寫出直線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設(shè)點的直角坐標為,求點到,兩點的距離之積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)如果不等式對于一切的恒成立,求的取值范圍;
(3)證明:不等式對于一切的恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)根據(jù)樣本直方圖估計所取樣本的中位數(shù)及平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)滿足,當時,,設(shè)在上的最大值為,且的前n項和為,若對任意的正整數(shù)n均成立,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】位于濰坊濱海的“濱海之眼”摩天輪是世界上最高的無軸摩天輪,該摩天輪的直徑均為124米,中間沒有任何支撐,摩天輪順時針勻速旋轉(zhuǎn)一圈需要30分鐘,當乘客乘坐摩天輪到達最高點時,距離地面145米,可以俯瞰白浪河全景,圖中與地面垂直,垂足為點,某乘客從處進入處的觀景艙,順時針轉(zhuǎn)動分鐘后,第1次到達點,此時點與地面的距離為114米,則( )
A. 16分鐘B. 18分鐘C. 20分鐘D. 22分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入a(單位:萬元)滿足,乙城市收益Q與投入a(單位:萬元)滿足,設(shè)甲城市的投入為x(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)求及定義域;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=9x+ +7.若f(x)≥a+1對一切x≥0成立,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班運動隊由足球運動員18人,籃球運動員12人、羽毛球運動員6人組成(每人只參加一項),現(xiàn)從這些運動員中抽取個容量為的樣本,若分別采用系統(tǒng)抽樣法和分層抽樣法,則都不用剔除個體;當抽取樣本的容量為時,若采用系統(tǒng)抽樣法,則需要剔除一個個體,則樣本容量 ( )
A. 6B. 7C. 12D. 18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com