【題目】如圖,在五棱錐P﹣ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,側棱PA與底面ABCDE所成角為45°,S△PBE= ,點M在側棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.
【答案】證明:(Ⅰ)取BE中點F,連接AF,GF,由題意得A,F,G三點共線, 過點P作PO⊥AG于O,則PO⊥底面ABCDE
∵BE平面ABCDE,∴BE⊥PO,
∵△ABE是等邊三角形,
∴BE⊥AG
∵AG∩PO=O,∴BE⊥平面PAG,
∵BE平面PBE,
∴平面PBE⊥平面APG.
解:(II)連接PF,
∵
又∵∠PAF=45°,∴PF⊥AF,∴PF⊥AF,
∴PF⊥底面ABCDE.
∴O點與F點重合.
如圖,以O為原點,分別以 的方向為x軸,y軸,z軸正方向,建立空間直角坐標系.
底面ABCDE的一個法向量
∵ ,
∴ ,
設平面ABM的法向量 ,
∵ ,
∴ ,∴ ,
∴ ,取 則 ,
∴ ,
∵二面角的法向量 分別指向二面角的內外, 即為二面角的平面角,
∴cos< > = = .
∴二面角M﹣AB﹣D的余弦值為 .
【解析】(Ⅰ)取BE中點F,連接AF,GF,由題意得A,F,G三點共線,過點P作PO⊥AG于O,則PO⊥底面ABCDE,推導出BE⊥PO,BE⊥AG,由此能證明平面PBE⊥平面APG.(II)連接PF,推導出O點與F點重合,以O為原點,分別以 的方向為x軸,y軸,z軸正方向,建立空間直角坐標系.利用向量法能求出二面角M﹣AB﹣D的余弦值.
【考點精析】本題主要考查了平面與平面垂直的判定的相關知識點,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= +acosx,g(x)是f(x)的導函數.
(1)若f(x)在 處的切線方程為y= ,求a的值;
(2)若a≥0且f(x)在x=0時取得最小值,求a的取值范圍;
(3)在(1)的條件下,當x>0時, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 ,函數 ,若函數f(x)圖象的兩個相鄰的對稱軸間的距離為 .
(1)求函數f(x)的單調增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為 (a>0,β為參數),以O為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程ρcos(θ﹣ )= .
(Ⅰ)若曲線C與l只有一個公共點,求a的值;
(Ⅱ)A,B為曲線C上的兩點,且∠AOB= ,求△OAB的面積最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數f(x)=|ax﹣2|.
(Ⅰ)當a=2時,解不等式f(x)>x+1;
(Ⅱ)若關于x的不等式f(x)+f(﹣x)< 有實數解,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=e ﹣ ,其中e為自然對數的底數.
(1)設g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導函數),判斷g(x)在(﹣1,+∞)上的單調性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點,試確定正數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤ξ1(萬元)的概率分布列如表所示:
ξ1 | 110 | 120 | 170 |
P | m | 0.4 | n |
且ξ1的期望E(ξ1)=120;若投資乙項目一年后可獲得的利潤ξ2(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為p(0<p<1)和1﹣p.若乙項目產品價格一年內調整次數X(次數)與ξ2的關系如表所示:
X | 0 | 1 | 2 |
ξ2 | 41.2 | 117.6 | 204.0 |
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關系是( )
A.相交
B.平行
C.垂直
D.不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com