計(jì)算定積分:=_______.

試題分析:,故應(yīng)填入:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在R上的函數(shù)f(x)=
1
3
ax3+bx2+cx+2
同時(shí)滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=[
1
3
x3-f(x)]•ex,求函數(shù)g(x)在[m,m+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計(jì)劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價(jià)值為,其它的三個(gè)邊角地塊每單位面積價(jià)值元.
(1)求等待開墾土地的面積;
(2)如何確定點(diǎn)C的位置,才能使得整塊土地總價(jià)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(1)求的單調(diào)區(qū)間;(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=
1
3
ax3+
1
2
bx2
+cx+d的圖象過原點(diǎn),且在點(diǎn)(-1,f(-1))處的切線與x軸平行.對(duì)任意x∈R,都有x≤f′(x)≤
1
2
(x2+1)

(1)求函數(shù)y=f(x)在點(diǎn)(1,f(1))處切線的斜率;
(2)求f(x)的解析式;
(3)設(shè)g(x)=12f(x)-4x2-3x-3,h(x)=
m
x
+x•lnx,對(duì)任意x1x2∈[
1
2
,2]
,都有h(x1)≥g(x2),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在點(diǎn)x0處取得極大值4,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(0,0),(2,0),如圖,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=xex,其中x∈R.
(Ⅰ)求曲線f(x)在點(diǎn)(x0,x0ex0)處的切線方程
(Ⅱ)如果過點(diǎn)(a,b)可作曲線y=f(x)的三條切線
(1)當(dāng)-2<a<0時(shí),證明:-
1
e2
(a+4)<b<f(a);
(2)當(dāng)a<-2時(shí),寫出b的取值范圍(不需要書寫推證過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的值等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則x0的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案