已知
+
=1,x>0,y>0,x
2+y
2+z
2=2xyz,則x+y+z的最小值為
.
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:令x+y+z=k,代入x
2+y
2+z
2=2xyz=2xyz得得4(x+y)
2-(4k+2)(x+y)+k
2=0,再根據(jù)基本不等式x+y=(x+y)(
+
)≥4,然后求出k的取值范圍,最后x+y=
≥4求出xk
的最小值.
解答:
解:
+
=1,∴x+y=xy.①
設(shè)x+y+z=k,則z=k-x-y,
代入x
2+y
2+z
2=2xyz=x
2+y
2+(k-x-y)
2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)
2-2xy+k
2-2k(x+y)=2k(x+y)-2(x+y)
2,
4(x+y)
2-(4k+2)(x+y)+k
2=0,
=(2k+1)
2-4k
2=4k+1,
x+y=(x+y)(
+
)≥4,
∴x+y=
≥4
2k+1+
≥16,
≥15-2k,
化為k≥=7.5,或k<7.5且4k
2-60k+225≤4k+1,
4k
2-64k+224≤0,
k
2-16k+56≤0,
∴k≥8-
2,
∴x+y+z的最小值是8-2
.
故答案為:8-2
點評:本題主要考查了不等式的基本應(yīng)用,本題關(guān)鍵是轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
如圖,是一個幾何體的三視圖,請認真讀圖.
(1)畫出幾何體的直觀圖.
(2)當(dāng)AB的中點為M,PC的中點為N時,求證:MN∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
現(xiàn)有內(nèi)科醫(yī)生4名,外科醫(yī)生5名,要派3名醫(yī)生參加賑災(zāi)醫(yī)療隊,如果要求內(nèi)科醫(yī)生和外科醫(yī)生中都有人參加,則有
種選法(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
有5種不同的蔬菜,從中選出4種,分別種植在不同土質(zhì)的4塊土地上進行實驗,則不同的種植方法共
種.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表,設(shè)a
ij(i,j∈N
*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右第j個數(shù),如a
42=8.若a
ij=26,則(i,j)=
;若a
ij=2014,則i+j=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù) y=1+
(a,θ∈R,a≠0).那么對于任意的a,θ,函數(shù)y的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
總體有編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為
7816 6572 0802 6314 0702 4369 9728 0198 |
3204 9234 4935 8200 3623 4869 6938 7481 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
復(fù)平面內(nèi)的點A,B,C對應(yīng)的復(fù)數(shù)分別為i,1,4+2i,由A→B→C→D按逆時針順序作平行四邊形ABCD,則|
|=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知sinθ>0,cosθ<0,則θ為( )
A、第一象限角 |
B、第二象限角 |
C、第三象限角 |
D、第四象限角 |
查看答案和解析>>