精英家教網 > 高中數學 > 題目詳情

【題目】如圖,準備在墻上釘一個支架,支架由兩直桿AC與BD 焊接而成,焊接點 D 把桿AC 分成 AD, CD 兩段,其中兩固定點A,B 間距離為1 米,AB 與桿 AC 的夾角為60 ,桿AC 長為 1 米,若制作 AD 段的成本為a 元/米,制作 CD 段的成本是 2a 元/米,制作桿BD 成本是 3a 元/米. 設 ADB ,則制作整個支架的總成本記為 S 元.

(1)求S關于 的函數表達式,并求出的取值范圍;

(2)問 段多長時S最?

【答案】(1) ;(2) 時S最小.

【解析】試題分析:在,由正弦定理得進而利用三角形的面積公式,得到關于的表達式即的取值范圍.

(2)求德,得到函數的單調性,即可得到函數的極值與最值.

試題解析:

(1)在△ABD中,由正弦定理得,

所以,

,

由題意得.

(2)令 ,,

0

單調遞減

極大值

單調遞增

所以當時,S最小,此時

∴ 當時S最小.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知各項均為正數的數列{an}的前n項和為Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且
(1)求{an}的通項公式
(2)設f(n)= bn=f(2n+4),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確的命題個數是( )

. 如果共面, 也共面,共面;

.已知直線a的方向向量與平面,若// ,則直線a// ;

③若共面,則存在唯一實數使,反之也成立;

.對空間任意點O與不共線的三點AB、C,若=x+y+z

(其中x、y、z∈R),則P、A、BC四點共面.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+ (a>0).
(1)求函數f(x)在[1,+∞)上的最小值;
(2)若存在三個不同的實數xi(i=1,2,3)滿足f(x)=ax.
(i)證明:a∈(0,1),f( )>
(ii)求實數a的取值范圍及x1x2x3的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)2007年至2013年農村居民家庭人均純收入y(單位:千元)的數據如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓x2+y2=8內有一點P(-1,2),AB為過點P且傾斜角為α的弦.

(1)當弦AB被點P平分時,求直線AB的方程;

(2)求過點P的弦的中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點P的軌跡是(  )

A. 圓的一部分 B. 橢圓的一部分

C. 球的一部分 D. 拋物線的一部分

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=log2x+a).

(Ⅰ)當a=1時,若fx)+fx-1)>0成立,求x的取值范圍;

(Ⅱ)若定義在R上奇函數gx)滿足gx+2)=-gx),且當0≤x≤1時,gx)=fx),求gx)在[-3,-1]上的解析式,并寫出gx)在[-3,3]上的單調區(qū)間(不必證明);

(Ⅲ)對于(Ⅱ)中的gx),若關于x的不等式g)≥g(-)在R上恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為為參數).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為

(1)當時,判斷直線與圓的關系;

2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.

查看答案和解析>>

同步練習冊答案