【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關(guān)指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結(jié)果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數(shù)總共為次.某定點醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設(shè)在接受檢驗的血液樣本中,每份樣本檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為.
(Ⅰ)求把2份血液樣本混合檢驗結(jié)果為陽性的概率;
(Ⅱ)若檢驗次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.
【答案】(Ⅰ);(Ⅱ)選擇方案三最“優(yōu)”,理由見解析
【解析】
(Ⅰ)根據(jù)獨立事件和對立事件概率公式可計算求得結(jié)果;
(Ⅱ)確定方案二和方案三檢驗次數(shù)所有可能的取值,并求得每個取值對應(yīng)的概率,進而得到分布列,由數(shù)學(xué)期望的計算公式計算得到期望,與方案一的期望進行比較,得到最優(yōu)方案.
(Ⅰ)該混合樣本陰性的概率為:,
根據(jù)對立事件原理,陽性的概率為:.
(Ⅱ)方案一:逐個檢驗,檢驗次數(shù)為.
方案二:由(Ⅰ)知,每組個樣本檢驗時,若陰性則檢驗次數(shù)為,概率為;
若陽性則檢驗次數(shù)為,概率為,
設(shè)方案二的檢驗次數(shù)記為,則的可能取值為,
;;,
則的分布列如下:
可求得方案二的期望為.
方案三:混在一起檢驗,設(shè)方案三的檢驗次數(shù)記為,的可能取值為,,
,,
則的分布列如下:
可求得方案三的期望為.
比較可得,故選擇方案三最“優(yōu)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校6個學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤恚?/span>
學(xué)生的編號 | 1 | 2 | 3 | 4 | 5 | 6 |
數(shù)學(xué) | 89 | 87 | 79 | 81 | 78 | 90 |
物理 | 79 | 75 | 77 | 73 | 72 | 74 |
(1)若在本次考試中,規(guī)定數(shù)學(xué)在80分以上(包括80分)且物理在75分以上(包括75分)的學(xué)生為理科小能手.從這6個學(xué)生中抽出2個學(xué)生,設(shè)表示理科小能手的人數(shù),求的分布列和數(shù)學(xué)期望;
(2)通過大量事實證明發(fā)現(xiàn),一個學(xué)生的數(shù)學(xué)成績和物理成績具有很強的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績,用表示物理成績,求與的回歸方程.
參考數(shù)據(jù)和公式:,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:經(jīng)過定點,其左右集點分別為,且,過右焦且與坐標軸不垂直的直線l與橢圈交于P,Q兩點.
(1)求橢圓C的方程:
(2)若O為坐標原點,在線段上是否存在點,使得以,為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線上點作三條斜率分別為,,的直線,,,與拋物線分別交于不同于的點.若,,則以下結(jié)論正確的是( )
A.直線過定點B.直線斜率一定
C.直線斜率一定D.直線斜率一定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線的參數(shù)方程:(為參數(shù)),以原點為極點,軸非負半軸為極軸(取相同單位長度)建立極坐標系,圓的極坐標方程為:.
(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;
(2)求圓上的點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com