【題目】過拋物線上點作三條斜率分別為,,的直線,,與拋物線分別交于不同于的點.若,,則以下結(jié)論正確的是(

A.直線過定點B.直線斜率一定

C.直線斜率一定D.直線斜率一定

【答案】B

【解析】

由題意,,均不為0,設(shè),則,同理可得,,由,得,再設(shè)出直線的方程為,利用韋達定理即可判斷選項AB,同理判斷選項C、D.

由題意,,,均不為0,設(shè),

,同理可得,

,由,得,即,①

設(shè)直線的方程為,聯(lián)立拋物線方程可得,

代入①式可得,

此時直線的方程為,故直線斜率是定值,故B正確,A錯誤;

,得,即,②,同理設(shè)直線

的方程為,聯(lián)立拋物線方程可得,

代入②式可得,此時的方程為

,恒過定點,斜率不是定值,故C錯誤;

,,得,即

③,同理設(shè)直線的方程為,聯(lián)立拋物線方程可

,則代入③式可得

,此時的方程為恒過定點,斜率不為定值.

D錯誤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinx+2φ)為偶函數(shù),其中φ∈(0,),則下列關(guān)于函數(shù)gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數(shù)fx)的圖象向上平移一個單位,再向右平移個單位長度得到

C.gx)的圖象的一個對稱中心為(,0

D.gx)的一個單調(diào)遞增區(qū)間為[0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某校學(xué)生每周體育鍛煉落實的情況,采用分層抽樣的方法,收集100位學(xué)生每周平均鍛煉時間的樣本數(shù)據(jù)(單位:).根據(jù)這100個樣本數(shù)據(jù),制作出學(xué)生每周平均鍛煉時間的頻率分布直方圖(如圖所示).

(Ⅰ)估計這100名學(xué)生每周平均鍛煉時間的平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)由頻率分布直方圖知,該校學(xué)生每周平均鍛煉時間近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

i)求;

ii)若該校共有5000名學(xué)生,記每周平均鍛煉時間在區(qū)間的人數(shù)為,試求.

附:,若~,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標(biāo)方程為:,曲線上的點對應(yīng)的參數(shù),曲線上的點對應(yīng)的參數(shù),求的中點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 命題“若,則”的逆否命題是真命題

B. 命題“”的否定是“

C. 為真命題,則為真命題

D. 已知,則“”是“”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關(guān)指標(biāo)是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結(jié)果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數(shù)總共為次.某定點醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設(shè)在接受檢驗的血液樣本中,每份樣本檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為

(Ⅰ)求把2份血液樣本混合檢驗結(jié)果為陽性的概率;

(Ⅱ)若檢驗次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點o為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程:

(Ⅱ)點P是曲線C上的動點,求點P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)為曲線上的點,,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案