【題目】為迎接五一節(jié)的到來,某單位舉行慶五一,展風采的活動.現(xiàn)有6人參加其中的一個節(jié)目,該節(jié)目由兩個環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個選擇方案:按下電腦鍵盤Enter鍵則會出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個點數(shù),并在屏幕的下方計算出的值.現(xiàn)規(guī)定:每個人去按Enter鍵,當顯示出來的小于時則參加環(huán)節(jié),否則參加環(huán)節(jié).

1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;

2)用分別表示這6個人中去參加該節(jié)目兩個環(huán)節(jié)的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

【答案】12)見解析

【解析】

1)利用古典概型概率公式得出選擇參加環(huán)節(jié)的概率,選擇參加環(huán)節(jié)的概率,再利用獨立重復實驗概率公式,即可得出答案;

2)得出的可能取值以及對應(yīng)概率,即可得出分布列以及期望.

1)依題意得,由屏幕出現(xiàn)的點數(shù)形成的有序數(shù)對,一共有種等可能的基本事件

符合的有24

所以選擇參加環(huán)節(jié)的概率為,選擇參加環(huán)節(jié)的概率為

所以這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率

2)依題意得的可能取值為

所以的分布列為

0

2

4

6

數(shù)學期望

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),已知對任意,都有,且成立.令,其中為常數(shù).

1)當時,求函數(shù)的所有零點;

2)當時,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個公共點,求C1的普通方程;

2)已知點A01),若曲線C1方程中的參數(shù)是t,0απ,且C1C2相交于P,Q兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若存在閉區(qū)間使得函數(shù)滿足

上是單調(diào)函數(shù); 上的值域是,則稱區(qū)間是函數(shù) 和諧區(qū)間,

下列結(jié)論錯誤的是

A.函數(shù) 存在 和諧區(qū)間

B.函數(shù) 存在 和諧區(qū)間

C.函數(shù) 存在 和諧區(qū)間

D.函數(shù) 存在 和諧區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學習雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:

損壞餐椅數(shù)

未損壞餐椅數(shù)

學習雷鋒精神前

50

150

200

學習雷鋒精神后

30

170

200

80

320

400

求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關(guān)?

請說明是否有以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神

有關(guān)?參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的中心為,一邊所在直線的方程為,求其他三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,證明:;

(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習冊答案