【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

【答案】D

【解析】

按三步分步進(jìn)行,先考慮甲單位招聘,利用間接法,因?yàn)橹辽僬衅敢幻猩瑢⒅徽信那闆r去掉,錄取方案數(shù)為,然后剩余四人依次分配給乙單位和丙單位,分別為,然后根據(jù)分步乘法計(jì)數(shù)原理將三個(gè)數(shù)相乘可得出答案。

根據(jù)題意,分3步進(jìn)行

①單位甲在6人中任選2人招聘,要求至少招聘一名男生,有種情況,

②單位乙在剩下的4人中任選2人招聘,有種情況,

③單位丙在剩下的2人中任選1人招聘,有種情況,

則有種不同的錄取方案;

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC底面BCDE,BC=2,CD=,AB=AC

1)證明.

2)設(shè)側(cè)面ABC為等邊三角形,求二面角C-AD-E的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接五一節(jié)的到來,某單位舉行慶五一,展風(fēng)采的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤Enter鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù),并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按Enter鍵,當(dāng)顯示出來的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).

1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;

2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,射線OAOB分別與x軸正半軸成45°30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OBA、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線yx上時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)橢圓的左焦點(diǎn)為,左頂點(diǎn)為,頂點(diǎn)為B.已知為原點(diǎn)).

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)經(jīng)過點(diǎn)且斜率為的直線與橢圓在軸上方的交點(diǎn)為,圓同時(shí)與軸和直線相切,圓心在直線上,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)在區(qū)間的最小值;

2)若討論函數(shù)的單調(diào)性;

3)若對(duì)于任意的

的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓x2y2+2x-15=0的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓AC,D兩點(diǎn),過BAC的平行線交AD于點(diǎn)E.

(1)證明|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程;

(2)設(shè)點(diǎn)E的軌跡為曲線C1,直線lC1M,N兩點(diǎn),過B且與l垂直的直線與圓A交于PQ兩點(diǎn),求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)的各景點(diǎn)從2009年取消門票實(shí)行免費(fèi)開放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向觀光、休閑、會(huì)展三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬人)與年份的數(shù)據(jù):

1

2

3

4

5

6

7

8

9

10

旅游人數(shù)(萬人)

300

283

321

345

372

435

486

527

622

800

該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了的兩個(gè)回歸模型:

模型①:由最小二乘法公式求得的線性回歸方程

模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.

1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到001).

2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個(gè)位).

回歸方程

30407

14607

參考公式、參考數(shù)據(jù)及說明:

①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.②刻畫回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|yf(x),xA}=A,則稱函數(shù)f(x)為“同域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“同域區(qū)間”.給出下列四個(gè)函數(shù):

;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).

存在“同域區(qū)間”的“同域函數(shù)”的序號(hào)是__________.(請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案