【題目】已知函數(shù)

1)若,求函數(shù)在區(qū)間的最小值;

2)若討論函數(shù)的單調(diào)性;

3)若對(duì)于任意的

的取值范圍。

【答案】12時(shí),增區(qū)間,時(shí),減區(qū)間,增區(qū)間3

【解析】

試題(1)先求,根據(jù)導(dǎo)數(shù)的符號(hào)判斷函數(shù)fx)在[-11]的單調(diào)性,從而求出fx)的最小值;(2)先求f′x),討論a,判斷導(dǎo)數(shù)符號(hào),從而得出函數(shù)fx)在(0,+∞)上的單調(diào)性;(3)將不等式變形為:,所以令,從而得到gx)在(0+∞)上為增函數(shù),所以g′x)>0,所以,為了求a的范圍,所以需要求的范圍,可通過(guò)求導(dǎo)數(shù),根據(jù)單調(diào)性來(lái)求它的范圍,求得范圍是,所以2-a≥1,所以求得a的范圍

試題解析:(1)當(dāng)a=-1時(shí),f(x)=ex-x+2,

綜上所述:

上單調(diào)遞增

3

構(gòu)造函數(shù)

恒成立

恒成立,令

∴ a-2≤-1 ∴ a≤1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸,焦點(diǎn)為

(1)求橢圓和拋物線的方程;

(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:

損壞餐椅數(shù)

未損壞餐椅數(shù)

計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

計(jì)

80

320

400

求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

請(qǐng)說(shuō)明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神

有關(guān)?參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)相同的小球放到三個(gè)編號(hào)為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號(hào)數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y24y+10,點(diǎn)M(﹣1,﹣1),從圓C外一點(diǎn)P向該圓引一條切線,記切點(diǎn)為T

1)若過(guò)點(diǎn)M的直線l與圓交于AB兩點(diǎn)且|AB|2,求直線l的方程;

2)若滿(mǎn)足|PT||PM|,求使|PT|取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐SABCD中,MSB的中點(diǎn),ABCD,BCCD,且ABBC2CDSD1,又SD⊥面SAB

1)證明:CDSD

2)證明:CM∥面SAD;

3)求四棱錐SABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;

(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角所對(duì)的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案