【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,證明:.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)先求解導(dǎo)數(shù),再結(jié)合導(dǎo)數(shù)式特點(diǎn),進(jìn)行分類討論,可得單調(diào)性;
(2)結(jié)合極值點(diǎn)的特征,把目標(biāo)式中雙變量轉(zhuǎn)化為單變量,結(jié)合函數(shù)單調(diào)性可證.
(1)解:由題得,其中,
考察,,其中對(duì)稱軸為,.
若,則,
此時(shí),則,所以在上單調(diào)遞增;
若,則,
此時(shí)在上有兩個(gè)根,,且,
所以當(dāng)時(shí),,則,單調(diào)遞增;
當(dāng)時(shí),,則,單調(diào)遞減;
當(dāng)時(shí),,則,單調(diào)遞增,
綜上,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
(2)證明:由(1)知,當(dāng)時(shí),有兩個(gè)極值點(diǎn),,且,,
所以
.
令,,則只需證明,
由于,故在上單調(diào)遞減,所以.
又當(dāng)時(shí),,,
故,
所以,對(duì)任意的,.
綜上,可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全民健身倡導(dǎo)全民做到每天參加一次以上的體育健身活動(dòng),旨在全面提高國民體質(zhì)和健康水平.某部門在該市2013-2018年發(fā)布的全民健身指數(shù)中,對(duì)其中的“運(yùn)動(dòng)參與評(píng)分值”(滿分100分)進(jìn)行了統(tǒng)計(jì),制成如圖所示的散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖,建立關(guān)于的回歸方程;
(2)從該市的市民中隨機(jī)抽取了容量為150的樣本,其中經(jīng)常參加體育鍛煉的人數(shù)為50,以頻率為概率,若從這150名市民中隨機(jī)抽取4人,記其中“經(jīng)常參加體育鍛煉”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,是邊長為2的正三角形,是的中點(diǎn),是的中點(diǎn).
(1)證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2),是橢圓上的兩點(diǎn),線段的中點(diǎn)在直線上,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點(diǎn)B的坐標(biāo)是(4,2),端點(diǎn)A在圓C:(x+2)2+y2=16上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)的軌跡方程H.
(2)判斷(1)中軌跡H與圓C的位置關(guān)系.
(3)過點(diǎn)P(3,2)作兩條相互垂直的直線MN,EF,分別交(1)中軌跡H于M,N和E,F,求四邊形MNFE面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列4個(gè)命題:
①若函數(shù)在上有零點(diǎn),則一定有;
②函數(shù)既不是奇函數(shù)又不是偶函數(shù);
③若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是;
④若函數(shù)滿足條件,則的最小值為.
其中正確命題的序號(hào)是:_______.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)求曲線與直線的直角坐標(biāo)方程.
(2)直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是離心率為的橢圓:的左、右焦點(diǎn),過作軸的垂線交橢圓所得弦長為,設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),線段的中垂線與橢圓交于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com