【題目】已知線段AB的端點B的坐標是(4,2),端點A在圓C:(x+2)2+y2=16上運動.
(1)求線段AB的中點的軌跡方程H.
(2)判斷(1)中軌跡H與圓C的位置關系.
(3)過點P(3,2)作兩條相互垂直的直線MN,EF,分別交(1)中軌跡H于M,N和E,F,求四邊形MNFE面積的最大值
【答案】(1)(x﹣1)2+(y﹣1)2=4.(2)兩圓相交.(3).
【解析】
(1)設,,中點,根據(jù)已知關系,由相關點法即可得出圓的方程;
(2)比較圓心距與兩圓半徑的關系,得出兩圓位置關系;
(3)根據(jù)圓的完美性,本題把圓和點同時向左和向下平移一個單位后,就可以把問題轉換為與圓的問題求解.
(1)設A(x0,y0),中點H(x,y),
則,∴,
代入圓C:(x+2)2+y2=16中,
化簡得圓H:(x﹣1)2+(y﹣1)2=4;
(2)兩圓圓心分別為C(﹣2,0),H(1,1),半徑分別為,
∴圓心距d,
∴r1﹣r2<d<r1+r2
∴兩圓相交;
(3)根據(jù)圓的完美性,本題把圓和點同時向左和向下平移一個單位后,
就可以把問題轉換為(2,1)與圓x2+y2=4的問題,
為方便,點名均不變,則P(2,1),H(0,0),
記圓心H到直線MN,EF的距離分別為d1,d2,
則,r=2,
,
,
,
,
所以四邊形MNFE的面積為
,
又由可以得|x1x2+y1y2|,
所以,
當且僅當d1=d2時取等號,
即四邊形MNFE的面積最大為.
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關需要回答三個問題,其中前兩個問題回答正確各得分,回答不正確得分,第三個問題回答正確得分,回答不正確得分.如果一個挑戰(zhàn)者回答前兩個問題正確的概率都是,回答第三個問題正確的概率為,且各題回答正確與否相互之間沒有影響.若這位挑戰(zhàn)者回答這三個問題總分不低于分就算闖關成功.
(Ⅰ)求至少回答對一個問題的概率;
(Ⅱ)求這位挑戰(zhàn)者回答這三個問題的總得分X的分布列;
(Ⅲ)求這位挑戰(zhàn)者闖關成功的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結論:
①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;
②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調查,則宜采用的抽樣方法是分層抽樣;
③線性相關系數(shù)越大,兩個變量的線性相關性越弱;反之,線性相關性越強;
④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.
其中正確的結論是( )
A. ①②B. ①④
C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是
A. 440B. 330
C. 220D. 110
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點O是四邊形ABCD的中心,關于直線A1O,下列說法正確的是( )
A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為、,,點在橢圓上,且的周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標為,不過原點的直線與橢圓相交于,兩點,設線段的中點為,點到直線的距離為,且,,三點共線,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A'B'C',AC=2,BC=4,∠ACB=120°,∠ACC'=90°,且平面AB'C⊥平面ABC,二面角A'﹣AC﹣B'為30°,E、F分別為A'C、B'C'的中點.
(1)求證:EF∥平面AB'C;
(2)求B'到平面ABC的距離;
(3)求二面角A﹣BB'﹣C'的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com