【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為、,點(diǎn)在橢圓上,且的周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線(xiàn)與橢圓相交于,兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為,點(diǎn)到直線(xiàn)的距離為,且,,三點(diǎn)共線(xiàn),求的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)根據(jù)焦距和焦點(diǎn)三角形周長(zhǎng)可求得,利用求得,從而可得橢圓的方程;(Ⅱ)當(dāng)直線(xiàn)斜率不存在時(shí),可判斷出,,三點(diǎn)不共線(xiàn),不符合題意;所以可假設(shè)出直線(xiàn)方程,與橢圓方程聯(lián)立,利用韋達(dá)定理表示出;由三點(diǎn)共線(xiàn)得到斜率相等關(guān)系,從而可求得;利用弦長(zhǎng)公式和點(diǎn)到直線(xiàn)距離公式求得,代入可整理出:,可知當(dāng)時(shí)取最大值.

(Ⅰ)由題意得:,

解得:,

橢圓的方程為

(Ⅱ)設(shè),

當(dāng)直線(xiàn)軸垂直時(shí),由橢圓的對(duì)稱(chēng)性可知,點(diǎn)軸上,且與點(diǎn)不重合

顯然,,三點(diǎn)不共線(xiàn),不符合題設(shè)條件

故可設(shè)直線(xiàn)的方程

,消去整理得:……①

, 點(diǎn)的坐標(biāo)為

,,三點(diǎn)共線(xiàn)

此時(shí)方程①為:,則

,

當(dāng)時(shí),的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連接正方體每個(gè)面的中心構(gòu)成一個(gè)正八面體,則該八面體的外接球與內(nèi)切球體積之比為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)是(4,2),端點(diǎn)A在圓C:(x+22+y216上運(yùn)動(dòng).

1)求線(xiàn)段AB的中點(diǎn)的軌跡方程H

2)判斷(1)中軌跡H與圓C的位置關(guān)系.

3)過(guò)點(diǎn)P3,2)作兩條相互垂直的直線(xiàn)MN,EF,分別交(1)中軌跡HM,NEF,求四邊形MNFE面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性

(2)函數(shù),且.若在區(qū)間(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)與直線(xiàn)的直角坐標(biāo)方程.

(2)直線(xiàn)軸的交點(diǎn)為,與曲線(xiàn)的交點(diǎn)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購(gòu)物的一種形式.某機(jī)構(gòu)對(duì)“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信支付”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專(zhuān)訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓上,且的周長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線(xiàn)與橢圓相交于,兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為,點(diǎn)到直線(xiàn)的距離為,且,三點(diǎn)共線(xiàn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓 的長(zhǎng)軸為,過(guò)點(diǎn)的直線(xiàn)軸垂直,橢圓上一點(diǎn)與橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn)構(gòu)成的三角形的最大面積為2,且橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2) 設(shè)是橢圓上異于 的任意一點(diǎn),連接并延長(zhǎng)交直線(xiàn)于點(diǎn), 點(diǎn)為的中點(diǎn),試判斷直線(xiàn)與橢圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過(guò)一年的教學(xué)實(shí)驗(yàn),將甲乙兩個(gè)班學(xué)生一年來(lái)的數(shù)學(xué)成績(jī)?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績(jī)均在,按照區(qū)間,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80(百分制)為優(yōu)秀.

1)完成表格,并判斷是否有90%以上的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與教學(xué)改革有關(guān);

甲班

乙班

總計(jì)

大于等于80分的人數(shù)

小于80分的人數(shù)

總計(jì)

2)從乙班分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來(lái)自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

同步練習(xí)冊(cè)答案