(本題滿分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為,離心率,過(guò)右焦點(diǎn)的直線
橢圓于兩點(diǎn):
(Ⅰ)求橢圓的方程;(Ⅱ)當(dāng)直線的斜率為1時(shí),求的面積;
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)由已知,橢圓方程可設(shè)為 ∵長(zhǎng)軸長(zhǎng)為,
心率,∴,所求橢圓方程為:
(Ⅱ)因?yàn)橹本過(guò)橢圓右焦點(diǎn),且斜率為,所以直線的方程為.設(shè),由      得 ,解得 .∴ . 
點(diǎn)評(píng):本題中第二小題三角形分割成兩個(gè)小三角形后底邊長(zhǎng)已知,只需求高,簡(jiǎn)化了計(jì)算量
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)兩直線的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
(1)焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為A(2,0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過(guò)點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線,過(guò)其一個(gè)焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于兩點(diǎn),O是坐標(biāo)原點(diǎn),滿足,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為中心,,為兩個(gè)焦點(diǎn)的橢圓上存在一點(diǎn),滿足,則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線上的焦點(diǎn),點(diǎn)在拋物線上,點(diǎn),則要使的值最小的點(diǎn)的坐標(biāo)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知橢圓及直線
(1)當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?
(2)若直線被橢圓截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 已知橢圓的離心率,A,B
分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(guò)(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知為雙曲線的焦點(diǎn),點(diǎn)在雙曲線上,點(diǎn)坐標(biāo)為
的一條中線恰好在直線上,則線段長(zhǎng)度為           

查看答案和解析>>

同步練習(xí)冊(cè)答案