【題目】某商店為了解氣溫對某產(chǎn)品銷售量的影響,隨機記錄了該商店月份中天的日銷售量(單位:千克)與該地當日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:

(1)求的回歸方程

(2)判斷之間是正相關(guān)還是負相關(guān);若該地月份某天的最低氣溫為,請用(1)中的回歸方程預(yù)測該商店當日的銷售量.

參考公式:,

【答案】(1); (2)yx之間是負相關(guān),預(yù)測該商店當日的銷售量為9.56千克.

【解析】

1)根據(jù)表中的數(shù)據(jù)求出等數(shù)據(jù),從而求出值,進而得出回歸方程;

2)根據(jù)(1)的方程可得yx之間的相關(guān)關(guān)系,將代入回歸方程,即可預(yù)測當日的銷售量.

解:(1)根據(jù)表中信息,==7,==9,

=287,=295,

所以==-0.56,

所以=9+0.56×7=12.92.

所以yx的回歸方程

(2)由(1)知,yx之間是負相關(guān),

根據(jù)回歸方程當x=6時,

=-0.56x+12.92=9.56,

答:預(yù)測該商店當日的銷售量為16.28千克.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

)求函數(shù)的單調(diào)區(qū)間和極值;

)當時,若函數(shù)在區(qū)間上存在唯一零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法的錯誤的是( 。

A. 經(jīng)過定點的傾斜角不為的直線的方程都可以表示為

B. 經(jīng)過定點的傾斜角不為的直線的方程都可以表示為

C. 不經(jīng)過原點的直線的方程都可以表示為

D. 經(jīng)過任意兩個不同的點、直線的方程都可以表示為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結(jié)論

(1)某學校從編號依次為001,002,…,900的900個學生中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中有兩個相鄰的編號分別為053,098,則樣本中最大的編號為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.

(4)對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.

則正確的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器注水,當球面恰好接觸水面時測得水深為6cm,如不計容器的厚度,則球的體積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , ,則(
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面P;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.

1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入年總成本)

查看答案和解析>>

同步練習冊答案