【題目】設(shè)△AnBnCn的三邊長(zhǎng)分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,則( )
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n﹣1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n﹣1}為遞減數(shù)列,{S2n}為遞增數(shù)列
【答案】B
【解析】解:b1=2a1﹣c1且b1>c1 , ∴2a1﹣c1>c1 , ∴a1>c1 ,
∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1 ,
又b1﹣c1<a1 , ∴2a1﹣c1﹣c1<a1 , ∴2c1>a1 , ∴ ,
由題意, +an , ∴bn+1+cn+1﹣2an= (bn+cn﹣2an),
∴bn+cn﹣2an=0,∴bn+cn=2an=2a1 , ∴bn+cn=2a1 ,
又由題意,bn+1﹣cn+1= ,∴ =a1﹣bn ,
∴bn+1﹣a1= ,∴bn﹣a1= ,
∴ ,cn=2a1﹣bn= ,
∴ [ ][ ]
= [ ﹣ ]單調(diào)遞增(可證當(dāng)n=1時(shí) >0)
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)試問(wèn)在線段上是否存在一點(diǎn),使銳二面角的余弦值為.若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店為了解氣溫對(duì)某產(chǎn)品銷(xiāo)售量的影響,隨機(jī)記錄了該商店月份中天的日銷(xiāo)售量(單位:千克)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:
(1)求與的回歸方程:
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地月份某天的最低氣溫為,請(qǐng)用(1)中的回歸方程預(yù)測(cè)該商店當(dāng)日的銷(xiāo)售量.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),若對(duì)一切恒成立, 給出以下結(jié)論:
①;
②;
③的單調(diào)遞增區(qū)間是 ;
④函數(shù)既不是奇函數(shù)也不是偶函數(shù);
⑤存在經(jīng)過(guò)點(diǎn)的直線與函數(shù)的圖象不相交.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)若不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為,以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點(diǎn),求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】七巧板是古代中國(guó)勞動(dòng)人民發(fā)明的一種中國(guó)傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識(shí)》卷一中寫(xiě)道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)已知函數(shù)f(x)=ex, g(x)=lnx.
(1)設(shè)f(x)在x1處的切線為l1, g(x)在x2處的切線為l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有兩個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)設(shè)h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com