口袋中有2個白球和4個紅球,現(xiàn)從中隨機地不放回連續(xù)抽取兩次,每次抽取1個,則
(1)第一次取出的是紅球的概率是多少?
(2)第一次和第二次都取出的是紅球的概率是多少?
(3)在第一次取出紅球的條件下,第二次取出的是紅球的的概率是多少?
(1)
(2)
(3)
本試題主要是考查了不放回抽樣中,古典概型概率的運用。,理解一般的概率和條件概率的區(qū)別,就是強調(diào)在什么的條件下,,,,,,事件發(fā)生的概率。
解: 記事件A:第一次取出的是紅球;事件B:第二次取出的是紅球.    2分
(1)P(A)==                                         4分
(2)P(AB)==                                        7分
(3)P(B|A)=P(AB)/P(A)=/=         
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一批產(chǎn)品需要進行質(zhì)量檢驗,質(zhì)檢部門規(guī)定的檢驗方案是:先從這批產(chǎn)品中任取3件作檢驗,若3件產(chǎn)品都是合格品,則通過檢驗;若有2件產(chǎn)品是合格品,則再從這批產(chǎn)品中任取1件作檢驗,這1件產(chǎn)品是合格品才能通過檢驗;若少于2件合格品,則不能通過檢驗,也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費為125元,并且所抽取的產(chǎn)品都要檢驗,記這批產(chǎn)品的檢驗費為元,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某機構(gòu)向民間招募防爆犬,首先進行入圍測試,計劃考察三個項目:體能,嗅覺和反應(yīng).這三個項目中只要有兩個通過測試,就可以入圍.某訓(xùn)犬基地有4只優(yōu)質(zhì)犬參加測試,已知它們通過體能測試的概率都是1/3,通過嗅覺測試的概率都是1/3,通過反應(yīng)測試的概率都是1/2.
求(1)每只優(yōu)質(zhì)犬能夠入圍的概率;
(2)若每入圍1只犬給基地記10分,設(shè)基地的得分為隨機變量ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)的概率分布如下,則P的值等于 (    )








A.           B.            C.            D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在舉辦的環(huán)境保護知識有獎問答比賽中,甲、乙、丙同時回答一道有關(guān)環(huán)境保護知識的問題,已知甲回答對這道題目的概率是,甲、丙兩人都回答錯的概率是,乙、丙兩人都回答對的概率是.
(1)求乙、丙兩人各自回答對這道題目的概率.
(2)求甲、乙、丙三人中至少有兩人回答對這道題目的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機變量X的分布列如下:
X
0
5
10
20
P
0.1
α
β
0.2
若數(shù)學(xué)期望,則方差       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)某單位有三輛汽車參加某種事故保險,單位年初向保險公司繳納每輛900元的保險金.對在一年內(nèi)發(fā)生此種事故的每輛汽車,單位獲9000元的賠償(假設(shè)每輛車最多只賠償一次)。設(shè)這三輛車在一年內(nèi)發(fā)生此種事故的概率分別為且各車是否發(fā)生事故相互獨立,求一年內(nèi)該單位在此保險中:
(1)獲賠的概率;(4分)
(2)獲賠金額的分別列與期望。(9分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(1)甲中彩; (2)甲、乙都中彩;  (3)乙中彩(14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將一枚質(zhì)地均勻的硬幣拋擲三次,設(shè)X為正面向上的次數(shù),則
等于( )
A.B.0.25C.0.75D.0.5

查看答案和解析>>

同步練習(xí)冊答案