某機構向民間招募防爆犬,首先進行入圍測試,計劃考察三個項目:體能,嗅覺和反應.這三個項目中只要有兩個通過測試,就可以入圍.某訓犬基地有4只優(yōu)質犬參加測試,已知它們通過體能測試的概率都是1/3,通過嗅覺測試的概率都是1/3,通過反應測試的概率都是1/2.
求(1)每只優(yōu)質犬能夠入圍的概率;
(2)若每入圍1只犬給基地記10分,設基地的得分為隨機變量ξ,求ξ的數(shù)學期望.
(1)  (2)

試題分析:解:(1)每只優(yōu)質犬入圍概率相等:
p=
(2)ξ的取值為0,1,2,3,4
服從ξ~B(4,)   Eξ=  Eη=
點評:對于獨立事件的概率公式,在討論的時候,注意考慮順序,以免漏掉情況。同時對于二項分布的期望值和方差公式要記憶,并直接運用即可。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

擲兩枚骰子,求所得的點數(shù)之和為6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實驗考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知離散型隨機變量的分布列如圖,設,則(    )

-1
0
1
P



A、    B、
C、   D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

甲、乙、丙三人在同一辦公室工作。辦公室只有一部電話機,設經過該機打進的電話是打給甲、乙、丙的概率依次為、、。若在一段時間內打進三個電話,且各個電話相互獨立。則這三個電話中恰好是一人一個電話的概率為         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校舉辦一場籃球投籃選拔比賽,比賽的規(guī)則如下:每個選手先后在二分區(qū)、三分區(qū)和中場跳球區(qū)三個位置各投一球,只有當前一次球投進后才能投下一次,三次全投進就算勝出,否則即被淘汰. 已知某選手在二分區(qū)投中球的概率為,在三分區(qū)投中球的概率為,在中場跳球區(qū)投中球的概率為,且在各位置投球是否投進互不影響.   
(Ⅰ)求該選手被淘汰的概率;   
(Ⅱ)該選手在比賽中投球的個數(shù)記為ξ,求隨機變量ξ的分布列與數(shù)學期望Eξ.(注:本小題結果可用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,隨機變量取值的概率均為,隨機變量取值的概率也均為,若記分別為的方差,則(   )
A.
B.
C.
D.的大小關系與的取值有關

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

口袋中有2個白球和4個紅球,現(xiàn)從中隨機地不放回連續(xù)抽取兩次,每次抽取1個,則
(1)第一次取出的是紅球的概率是多少?
(2)第一次和第二次都取出的是紅球的概率是多少?
(3)在第一次取出紅球的條件下,第二次取出的是紅球的的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)甲、乙兩人在罰球線投球命中的概率分別為,且各次投球相互之間沒有影響.
(1)甲、乙兩人在罰球線各投球一次,求這二次投球中恰好命中一次的概率;
(2)甲、乙兩人在罰球線各投球二次,求這四次投球中至少有一次命中的概率.

查看答案和解析>>

同步練習冊答案