橢圓的離心率為(   )
A.B.C.2D.4
B
解:因為橢圓的方程可知a="2,b=" ,c=1,因此離心率e=c/a=1/2,選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓,a,b為常數(shù)),動圓,。點分別為的左,右頂點,相交于A,B,C,D四點。
(1)求直線與直線交點M的軌跡方程;
(2)設(shè)動圓相交于四點,其中,。若矩形與矩形的面積相等,證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,兩焦點之間的距離為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓的右頂點作直線交拋物線于A、B兩點,
(1)求證:OA⊥OB;
(2)設(shè)OA、OB分別與橢圓相交于點D、E,過原點O作直線DE的垂線OM,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系內(nèi)已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的倍后得到點Q(x,y),且滿足·="1."
(1)求動點P所在曲線C的方程;
(2)過點B作斜率為-的直線L交曲線C于M、N兩點,且++=,試求△MNH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題滿分14分)
已知圓M定點,點為圓上的動點,點上,點上,且滿足。
(Ⅰ) 求點G的軌跡C的方程;
(Ⅱ) 過點(2,0)作直線l,與曲線C交于A,B兩點,O是坐標(biāo)原點,設(shè),是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△中,邊長為、邊上的中線長之和等于.若以邊中點為原點,邊所在直線為軸建立直角坐標(biāo)系,則△的重心的軌跡方程為:                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的長軸兩端點為,若橢圓上存在點,使得,求橢圓的離心率的取值范圍____________;
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上存在一點P,使得它對兩個焦點,的張角,則該橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果函數(shù)y=|x|-1的圖象與方程的曲線恰好有兩個不同的公共點,則實數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案