【題目】已知函數(shù)的圖象過點P(1,2),且在處取得極值
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在上的最值.
【答案】(1)a="4," b=-3(2)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為(3)最大值為6,最小值為
【解析】
試題(1)本題運用待定系數(shù)法求函數(shù)解析式,但函數(shù)圖象在x=處取得極值可得,通過解方程組可得到a、 b的值;(2)由導數(shù)性質(zhì)求出f'(x)>0和f'(x)<0的x范圍就是函數(shù)f(x)的單調(diào)區(qū)間;(3)由函數(shù)在區(qū)間[-1,1]上的單調(diào)性:f(x)在上是減函數(shù),在上是增函數(shù)求出函數(shù)的最值
試題解析:(1) ∵函數(shù)f(x)=x3+ax2+bx(a,bR)的圖象過點P(1,2)
∴ f(1)=2 ∴ a+b=1
又函數(shù)f(x)在x=處取得極值點
∴()=0 因(x)=3x2+2 ax+b ∴2a+3b="-1"
解得 a="4," b="-3"
經(jīng)檢驗 x=是f(x)極值點
(2)由(1)得(x)=3x2+8x-3令(x) >0 ,得 x< -3或 x>
令(x) <0 ,得 -3< x <
函數(shù)f(x)的單調(diào)增區(qū)間為(,-3), (,),
函數(shù)f(x)的單調(diào)減區(qū)間為(-3,)
(3) 由(2)知,又函數(shù)f(x)在x=處取得極小值點f()=f(-1)="6," f(1)="2"
函數(shù)f(x)在[-1,1]上的最大值為6,最小值為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形, 為等邊三角形, , 分別是, 的中點, .
(Ⅰ)求證:平面平面;
(Ⅱ)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學進行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱柱中, 分別為的中點,設.
(1)求證:平面平面;
(2)若二面角的平面角為,求實數(shù)的值,并判斷此時二面角是否為直二面角,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數(shù)列滿足.
(1)若,求的取值范圍;
(2)若是公比為等比數(shù)列,,求的取值范圍;
(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)(實數(shù)、為常數(shù)),且滿足.
(1)求函數(shù)的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;
(3)當時,函數(shù)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚骰子,設出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com