【題目】已知復數(shù)za2a6i,分別求出滿足下列條件的實數(shù)a的值:

1z是實數(shù);

2z是虛數(shù);

3z0.

【答案】1a=-5a3;(2a5a≠3a≠±2;(3a3

【解析】

1)根據(jù)題意a22a150a24≠0,解得答案.

2)根據(jù)題意a22a15≠0a24≠0,解得答案.

3)根據(jù)題意由a2a60a22a150,且a24≠0,解得答案.

a2a60,解得a=-2a3.

a22a150,解得a=-5a3.

a24≠0,解得a≠±2.

1)由a22a150a24≠0,得a=-5a3,

∴當a=-5a3時,z為實數(shù).

2)由a22a15≠0a24≠0,得a5a≠3a≠±2,

∴當a5a≠3a≠±2時,z是虛數(shù).

3)由a2a60a22a150,且a24≠0,得a3,∴當a3時,z0.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的中心在坐標原點,長軸均為且在軸上,短軸長分別為,過原點且不與軸重合的直線,的四個交點按縱坐標從大到小依次為,記,的面積分別為.

1)當直線軸重合時,若,求的值;

2)當變化時,是否存在與坐標軸不重合的直線,使得?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性.

(Ⅱ)若時,存在兩個正實數(shù)滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)單調(diào)遞增,,若對任意,存在,使得成立,則稱上的“追逐函數(shù)”.若,則下列四個命題:①上的“追逐函數(shù)”;②若上的“追逐函數(shù)”,則;③上的“追逐函數(shù)”;④當時,存在,使得上的“追逐函數(shù)”.其中正確命題的個數(shù)為( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、、共七組,其頻率分布直方圖如圖所示,已知.

1)求頻率分布直方圖中、的值;

2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.

(1)求頻率分布直方圖中的值;

(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;

(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是年我國就業(yè)人口及勞動年齡人口(勞動年齡人口包含就業(yè)人口)統(tǒng)計表:

時間(年)

就業(yè)人口(萬人)

勞動年齡人口(萬人)

則由表可知(

A.年我國就業(yè)人口逐年減少

B.年我國勞動年齡人口逐年增加

C.年這年我國就業(yè)人口數(shù)量的中位數(shù)為

D.年我國勞動年齡人口中就業(yè)人口所占比重逐年增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓C的標準方程;

2)點P是橢圓上異于短軸端點AB的任意一點,過點P軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關(guān)系.

查看答案和解析>>

同步練習冊答案