【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直,平面,平面.
(1)求證:平面平面;
(2)若,求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當時,,當時,,若直線與函數(shù)的圖象恰有11個不同的公共點,則實數(shù)的取值范圍為____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術方法的醫(yī)藥學體系,是中華民族的瑰寶.某科研機構研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關系.檢測這種藥品一個批次的5個樣本,得到成分甲的平均值為4克,標準差為克,則估計這批中醫(yī)藥的藥物功效的平均值為( )
A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達式,并求其定義域;
(2)當時,求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經常與齊國眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當某局打成10:10平后,每球交換發(fā)球權,先多得2分的一方獲勝,該局比賽結束.甲、乙兩位同學進行單打比賽,假設甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若點是函數(shù)的圖象上任意兩,且函數(shù)在點A和點B處的切線互相垂直,則下列結論正確的是( )
A.B.C.最大值為eD.最大值為e
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在新的勞動合同法出臺后,某公司實行了年薪制工資結構改革.該公司從2008年起,每人的工資由三個項目構成,并按下表規(guī)定實施:
項目 | 金額[元/(人年)] | 性質與計算方法 |
基礎工資 | 2007年基礎工資為20000元 | 考慮到物價因素,決定從2008年 起每年遞增10%(與工齡無關) |
房屋補貼 | 800 | 按職工到公司年限計算,每年遞增800元 |
醫(yī)療費 | 3200 | 固定不變 |
如果該公司今年有5位職工,計劃從明年起每年新招5名職工.
(1)若今年算第一年,將第n年該公司付給職工工資總額y(萬元)表示成年限n的函數(shù);
(2)若公司每年發(fā)給職工工資總額中,房屋補貼和醫(yī)療費的總和總不會超過基礎工資總額的p%,求p的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形,,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,有下列結論正確的有_____.
①三棱錐的體積的最大值為;
②三棱錐的外接球體積不變;
③三棱錐的體積最大值時,二面角的大小是60°;
④異面直線與所成角的最大值為90°.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com