【題目】已知矩形,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,有下列結(jié)論正確的有_____.

①三棱錐的體積的最大值為;

②三棱錐的外接球體積不變;

③三棱錐的體積最大值時,二面角的大小是60°;

④異面直線所成角的最大值為90°.

【答案】②④

【解析】

直接利用翻折問題的應(yīng)用和面面垂直的應(yīng)用和體積公式的應(yīng)用和異面直線的夾角的應(yīng)用求出結(jié)果.

解:矩形,,將沿對角線進行翻折,得到三棱錐,則在翻折的過程中,

,當平面平面時,三棱錐的高最大,此時三棱錐的體積,

所以三棱錐的體積的最大值為,故錯誤;

②設(shè)的中點為O,則由,知:

所以O為三棱錐外接球的球心,其半徑為,

所以外接球的體積為,三棱錐的外接球體積不變,故正確.

③三棱錐的體積最大值時,當平面平面時,二面角的大小是90°,故錯誤.

④當沿對角線進行翻折到使點D與點B的距離為,即時,在中,,所以,又,

翻折后的垂直關(guān)系沒有變,所以平面,即異面直線所成角的最大值為90°,故正確.

故答案為:②④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形與正三角形的邊長均為2,它們所在平面互相垂直,平面,平面

(1)求證:平面平面

(2)若,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小值;

2)設(shè)函數(shù),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=1,前n項和為Sn,數(shù)列{bn}為等比數(shù)列,b1>1,公比為2,且b2S3=54,b3+S2=16.

(Ⅰ)求數(shù)列{an}與{bn}的通項公式;

(Ⅱ)設(shè)數(shù)列{cn}滿足cn=an+bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的首項,數(shù)列項和記為,前項積記為.

(1) ,求等比數(shù)列的公比;

(2) (1)的條件下,判斷的大;并求為何值時,取得最大值;

(3) (1)的條件下,證明:若數(shù)列中的任意相鄰三項按從小到大排列,則總可以使其成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為,則數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,,點OAD的中點,.

1)求證:平面PAD;

2)若,求平面PBC與平面PAD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關(guān)環(huán)保知識的競賽.經(jīng)過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(Ⅰ)求的分布列及數(shù)學期望;

(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,滿足:

1)若,求數(shù)列的通項公式;

2)若,且

,求證:數(shù)列為等差數(shù)列;

若數(shù)列中任意一項的值均未在該數(shù)列中重復出現(xiàn)無數(shù)次,求首項應(yīng)滿足的條件.

查看答案和解析>>

同步練習冊答案