【題目】在平面直角坐標系中,已知圓:,圓: (,且).
(1)設為坐標軸上的點,滿足:過點P分別作圓與圓的一條切線,切點分別為、,使得,試求出所有滿足條件的點的坐標;
(2)若斜率為正數(shù)的直線平分圓,求證:直線與圓總相交.
【答案】(1)或(2)見解析
【解析】
分析:(1)設點的坐標為,根據(jù)切線長定理可得,又為坐標軸上的點,由此可得所求.(2)由題意可設直線的方程為,即.問題等價于圓心到直線的距離小于半徑,即 ,分析可得,由可得,從而得結論成立.
詳解:(1)設點的坐標為,圓與圓的半徑分別為,
由題意得,
即
化簡得,
因為為坐標軸上的點,
所以點的坐標為或.
(2)依題意知直線過圓的圓心,可設直線的方程為,即,
則圓心到直線的距離為,
又圓的半徑為,
“直線與圓總相交”等價于“且, ”,
即 ①,
記,整理得,
當時,得;
當時,由判別式,
解得;
綜上得,的最小值為1,
所以由①可得,解得.
故直線與圓總相交.
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查, 經統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認為關注“一帶一路”是否和年齡段有關?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若 ,求| |;
(2)設 =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過橢圓的右焦點作軸的垂線,與橢圓在第一象限內交于點,過作直線的垂線,垂足為,.
(1)求橢圓的方程;
(2)設為圓上任意一點,過點作橢圓的兩條切線,設分別交圓于點,證明:為圓的直徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取名學生的數(shù)學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)).
(1)當k≤0時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在(0,2)內存在兩個極值點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com