(12分)如圖:在四棱錐中,底面是矩形,平面是線段上的點,是線段上的點,且

(1)判斷與平面的關系,并證明;
(2)當時,證明:面平面.
(1)平行
(2)略
(1)過E作EM//PC交CD于M,連接FM,則,
所以FM//BC,易證:平面EFM//平面PBC,從而可判斷出EF//平面PBC.
(2)當時,E、F分別為PD、AB的中點,只需證明:即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

下面的一組圖形為某一四棱錐S-ABCD的底面與側面。

(1)請畫出四棱錐S-ABCD的示意圖,是否存在一條側棱垂直于底面?如果存在,請給出證明;如果不存在,請說明理由;
(2)若SA面ABCD,E為AB中點,求證:面
(3)求點D到面SEC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F
分別是線段AB.BC的中點,

(1)證明:PF⊥FD;
(2)在PA上找一點G,使得EG∥平面PFD;.
(3)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知一個四面體其中五條棱的長分別為1,1,1,1,,則此四面體體積的最大值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,A1B1C1—ABC是直三棱柱,∠BCA=90°,點D1、F1分別是A1B1、A1C1的中點,若BC=CA=CC1,則BD1與AF1所成角的余弦值是             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A,B為球面上相異兩點,則通過A,B兩點可作球的大圓(圓心與球心重合的截面圓)有(     ).
A.一個B.無窮多個C.零個D.一個或無窮多個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐的底面是菱形,平面,,點的中點.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

長方體的一個頂點上三條棱的邊長分別為3、4、5,且它的八個頂點都在同一球
面上,這個球的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為           

查看答案和解析>>

同步練習冊答案