將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,同時(shí)將縱坐標(biāo)縮小到原來的
1
2
倍,得到函數(shù)y=cos(x-
π
6
)的圖象,另一方面函數(shù)f(x)的圖象也可以由函數(shù)y=2cos2x+1的圖象按向量
c
平移得到,則
c
可以是( 。
A、(
π
6
,-1)
B、(
π
12
,1)
C、(
π
12
,-1)
D、(
π
6
,1)
分析:函數(shù)y=cos(x-
π
6
)的圖象,逆向返回,求出函數(shù)f(x),然后函數(shù)y=2cosx+1的圖象按向量
c
平移得到函數(shù)f(x)的圖象,從而求出選項(xiàng).
解答:解:將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,同時(shí)將縱坐標(biāo)縮小到原來的
1
2
倍,
得到函數(shù)y=cos(x-
π
6
)的圖象,所以函數(shù)f(x)=2cos(2x-
π
6
),
函數(shù)y=2cos2x+1的圖象按向量
c
平移得到,函數(shù)f(x)=2cos(2x-
π
6
);
所以
c
=(
π
12
,-1)

故選C.
點(diǎn)評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(
x
2
+
π
12
),cos
x
2
),
b
=(cos(
x
2
+
π
12
),-cos
x
2
),x∈[
π
2
,π]
,函數(shù)f(x)=
a
b

(1)若cosx=-
3
5
,求函數(shù)f(x)的值;
(2)將函數(shù)f(x)的圖象按向量
c
=(m,n)(0<m<π)平移,使得平移后的圖象關(guān)于原點(diǎn)對稱,求向量
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+2x+3(a∈R)
(1)若函數(shù)f(x)在x=2處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)若a=1,設(shè)g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)在(I)的條件下,將函數(shù)f(x)的圖象關(guān)于y軸對稱得到函數(shù)φ(x)的圖象,再將函數(shù)φ(x)的圖象向右平移3個(gè)單位向下平移4個(gè)單位得到函數(shù)w(x)的圖象,試確定函數(shù)w(x)的單調(diào)性并根據(jù)單調(diào)性證明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角函數(shù)f(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的部分圖象如圖所示.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位后得到函數(shù)g(x),試求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達(dá)式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
2
,
2
),
b
=(sin
π
4
x,cos
π
4
x),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象上的所有的點(diǎn)向左平移1個(gè)單位長度,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)+k在(-2,4)上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案