【題目】已知等差數(shù)列{an}的前n項和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){ }是首項為1公比為2的等比數(shù)列,求數(shù)列{bn}前n項和Tn .
【答案】
(1)解:∵等差數(shù)列{an}的前n項和為Sn,公差d≠0,
且S3+S5=50,a1,a4,a13成等比數(shù)列.
∴ ,
解得
∴an=a1+(n﹣1)d=3+2(n﹣1)=2n+1,
∴an=2n+1
(2)解:∵{ }是首項為1公比為2 的等比數(shù)列,
∴
∴ ① ②
兩式相減得:
=1+(2n﹣1)2n
【解析】(1)由已知條件利用等差數(shù)列的前n項和公式和通項公式以及等比數(shù)列的性質(zhì),求出首項和公差,由此能求出an=2n+1.(2) ,由此利用錯位相減法能求出數(shù)列{bn}前n項和Tn .
【考點精析】利用數(shù)列的前n項和對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=2n+1,(n∈N*).
(1)求數(shù)列{an}的通項an;
(2)設(shè)bn=nan+1 , 求數(shù)列{bn}的前n項和Tn;
(3)設(shè)cn= ,求證:c1+c2+…+cn< .(n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照,,,,的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+2ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當x>0時,x2+1<ex .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com