【題目】五點法作函數(shù)的圖象時,所填的部分數(shù)據(jù)如下:

(1)根據(jù)表格提供數(shù)據(jù)求函數(shù)的解析式;

2,求函數(shù)的單調(diào)減區(qū)間.

【答案】(1);(2).

【解析】分析:(1)由表中的最大值和最小值可得的值,通過,可求,根據(jù)對稱中心點坐標可知,圖象過代入求解,可得函數(shù)的解析式;(2)結(jié)合函數(shù)圖象:當時,函數(shù)的減區(qū)間是.

詳解:由表中的最大值為3,最小值為﹣1,可得A=,

=T,則T=2π.,

∵y=2sinωx+φ)的最大值是2,故得B=3﹣2=1.

此時函數(shù)f(x)=2sin(x+φ+1

圖象過(﹣)帶入可得:﹣1=2sin(+1

可得:φ=﹣,(k∈Z).

解得:φ=φ,∴φ=﹣

故得函數(shù)f(x)的解析式為f(x)=2sin(x﹣+1 .

(2)結(jié)合函數(shù)圖象:當函數(shù)的減區(qū)間是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美索不達米亞平原是人類文明的發(fā)祥地之一.美索不達米亞人善于計算,他們創(chuàng)造了優(yōu)良的計數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運算都精確到小數(shù)點后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認為選派哪位學(xué)生參加合適,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 是奇函數(shù) )的導(dǎo)函數(shù), ,當 時, 則使得 成立的 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , 的圖象在點 處的切線為 .
(1)求函數(shù) 的解析式;
(2)若 對任意的 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).

(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;

(2)若bn=an+2n+1,數(shù)列{bn}的前n項和為Tn..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系 中,曲線 的參數(shù)方程為 (其中 為參數(shù)),曲線 ,以坐標原點 為極點, 軸的正半軸為極軸建立極坐標系.
(1)求曲線 的普通方程和曲線 的極坐標方程;
(2)若射線 )與曲線 , 分別交于 兩點,求 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當|a|≤1,|x|≤1時,關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實數(shù)m的取值范圍是( 。
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

同步練習(xí)冊答案