【題目】已知函數(shù) , 的圖象在點(diǎn) 處的切線為 .
(1)求函數(shù) 的解析式;
(2)若 對(duì)任意的 恒成立,求實(shí)數(shù) 的取值范圍.

【答案】
(1)解: ,切線的斜率 ,∴ .

∴切線方程為 ,切點(diǎn)坐標(biāo)為 .

,∴ ,∴ .


(2)解:由(1)知 )恒成立,

)恒成立.令 ),∴ 即可

,設(shè) ,則 單調(diào)遞增, .

上遞減,在 上遞增,

∴當(dāng) 時(shí), 取最小值 ,∴ .


【解析】(1)利用導(dǎo)函數(shù)的性質(zhì)可求出切線的斜率,再根據(jù)點(diǎn)斜式求出直線的方程。(2)整理已知函數(shù)式構(gòu)造函數(shù) g ( x ),根據(jù)不等式的性質(zhì) 可得 k < g ( x ) min,再利用導(dǎo)函數(shù)g′(x)的性質(zhì)得出g ( x )的單調(diào)性進(jìn)而得到 g ( x ) 的最小值從而得出k的取值范圍。
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,內(nèi)角,,的對(duì)邊,,滿足

(1)求的大小;

(2)若, ,C角最小,求的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+ax,(a∈R),其圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),且x1<x2
(1)求a的取值范圍;
(2)證明: ;(f′(x)為f(x)的導(dǎo)函數(shù))
(3)設(shè)點(diǎn)C在函數(shù)f(x)的圖象上,且△ABC為等邊三角形,記 ,求(t﹣1)(a+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】五點(diǎn)法作函數(shù)的圖象時(shí),所填的部分?jǐn)?shù)據(jù)如下:

(1)根據(jù)表格提供數(shù)據(jù)求函數(shù)的解析式;

2當(dāng),求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

函數(shù)的一條對(duì)稱軸是

函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;

正弦函數(shù)在第一象限為增函數(shù);

,則其中

其中正確的有____________.(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半徑為1的球O內(nèi)切于正四面體A﹣BCD,線段MN是球O的一條動(dòng)直徑(M,N是直徑的兩端點(diǎn)),點(diǎn)P是正四面體A﹣BCD的表面上的一個(gè)動(dòng)點(diǎn),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正四面體的“骰子”(四個(gè)面分別標(biāo)有1,2,3,4四個(gè)數(shù)字),擲一次“骰子”三個(gè)側(cè)面的數(shù)字的和為“點(diǎn)數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點(diǎn)數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點(diǎn)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣4a|(a>0),若對(duì)x∈R,都有f(2x)﹣1≤f(x),則實(shí)數(shù)a的最大值為( 。
A.
B.
C.
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案