【題目】甲、乙二人進行一次圍棋比賽,每局勝者得1分,負者得0分,約定一方比另一方多3分或滿9局時比賽結(jié)束,并規(guī)定:只有一方比另一方多三分才算贏,其它情況算平局,假設(shè)在每局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立,已知前3局中,甲勝2局,乙勝1局.

(1) 求甲獲得這次比賽勝利的概率;

(2)設(shè)表示從第4局開始到比賽結(jié)束所進行的局?jǐn)?shù),求得分布列及數(shù)學(xué)期望.

【答案】(1);(2)見解析

【解析】

(1)利用互斥事件的概率和公式及相互獨立事件同時發(fā)生的概率乘法運算求出甲獲得這次比賽勝利的概率;

(2)求出隨機變量可取得值;利用互斥事件的概率和公式及相互獨立事件同時發(fā)生的概率乘法公式求出隨機變量取每一個值的概率;列出分布列;利用隨機變量的期望公式求出隨機變量的期望

(1)設(shè)甲獲得這次比賽勝利為事件A:

;

(2)X可能取值為:2,4,6

,,

,

的分布列為

2

4

6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 的焦距與橢圓 的短軸長相等,且的長軸長相等,這兩個橢圓在第一象限的交點為,直線經(jīng)過軸正半軸上的頂點且與直線為坐標(biāo)原點)垂直, 的另一個交點為, 交于, 兩點.

(1)求的標(biāo)準(zhǔn)方程;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機取兩個球.

(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只螞蟻在邊長分別為3,4,5的三角形區(qū)域內(nèi)隨機爬行,則其恰在離三個頂點距離都大于1的地方的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吸煙有害健康,遠離煙草,珍惜生命。據(jù)統(tǒng)計一小時內(nèi)吸煙5支誘發(fā)腦血管病的概率為0.02,一小時內(nèi)吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時內(nèi)吸煙5支未誘發(fā)腦血管病,則他在這一小時內(nèi)還能繼吸煙5支不誘發(fā)腦血管病的概率為( )

A. B. C. D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過拋物線y24x的焦點F,且與拋物線相交于AB兩點.

1)若AF4,求點A的坐標(biāo);

2)求線段AB的長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線 相交于、兩點,點為坐標(biāo)原點 .

(1)當(dāng)k=1時,求的值;

(2)若的面積等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析的說法中錯誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,點P(1,)在橢圓C上,直線l過橢圓的右焦點與橢圓相交于A,B兩點.

(1)求橢圓C的方程;

(2)在x軸上是否存在定點M,使得為定值?若存在,求定點M的坐標(biāo);若不在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案