【題目】一只螞蟻在邊長分別為3,4,5的三角形區(qū)域內(nèi)隨機(jī)爬行,則其恰在離三個頂點距離都大于1的地方的概率為( )

A. B. C. D.

【答案】D

【解析】

離三個頂點距離正好等于1的地方是分別以三個頂點為圓心,1為半徑的圓弧,所以離三個頂點距離都大于1的地方為該三角形內(nèi),分別以三個頂點為頂點,1為半徑的扇形區(qū)域以外的部分,則螞蟻在該區(qū)域的概率為該區(qū)域的面積比三角形區(qū)域面積

因為三角形區(qū)域邊長分別為3,4,5,所以該三角形為直角三角形,面積為,離三個頂點距離正好等于1的地方是分別以三個頂點為圓心,1為半徑的圓弧,所以離三個頂點距離都大于1的地方為該三角形內(nèi),分別以三個頂點為頂點,1為半徑的扇形區(qū)域以外的部分,三個扇形的頂角和為,所以三個扇形面積和為,所以螞蟻在該區(qū)域的概率為,選擇D項

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),若對于,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 C: 的焦距為2,且過點,右焦點為.設(shè)A,B 是C上的兩個動點,線段 AB 的中點M 的橫坐標(biāo)為,線段AB的中垂線交橢圓C于P,Q 兩點.

(1)求橢圓 C 的方程;

(2)設(shè)M點縱坐標(biāo)為m,求直線PQ的方程,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直棱柱ABC-A1B1C1的底面ABC中,CA=CB=1,ACB=90°,棱AA1=2,如圖,以C為原點,分別以CA,CB,CC1x,y,z軸建立空間直角坐標(biāo)系.

(1)求平面A1B1C的法向量;

(2)求直線AC與平面A1B1C夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點,且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人進(jìn)行一次圍棋比賽,每局勝者得1分,負(fù)者得0分,約定一方比另一方多3分或滿9局時比賽結(jié)束,并規(guī)定:只有一方比另一方多三分才算贏,其它情況算平局,假設(shè)在每局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立,已知前3局中,甲勝2局,乙勝1局.

(1) 求甲獲得這次比賽勝利的概率;

(2)設(shè)表示從第4局開始到比賽結(jié)束所進(jìn)行的局?jǐn)?shù),求得分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.某環(huán)保人士從當(dāng)?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機(jī)抽取了15天的AQI數(shù)據(jù),用如圖所示的莖葉圖記錄.根據(jù)該統(tǒng)計數(shù)據(jù),估計此地該年空氣質(zhì)量為優(yōu)或良的天數(shù)約為__________.(該年為366天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)),處的切線方程是. 

(1)求實數(shù) 的值;

(2)若對任意的, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案