(1)∵
f(x)=+lnx-1,
∴
f′(x)=-+=令f'(x)=0,得x=a.
①若a≤0,則f'(x)>0,f(x)在區(qū)間(0,e]上單調(diào)遞增,此時(shí)函數(shù)f(x)無(wú)最小值.
②若0<a<e,當(dāng)x∈(0,a)時(shí),f'(x)<0,函數(shù)f(x)在區(qū)間(0,a)上單調(diào)遞減,
當(dāng)x∈(a,e]時(shí),f'(x)>0,函數(shù)f(x)在區(qū)間(a,e]上單調(diào)遞增,
所以當(dāng)x=a時(shí),函數(shù)f(x)取得最小值lna
③若a≥e,則f'(x)≤0,函數(shù)f(x)在區(qū)間(0,e]上單調(diào)遞減,
所以當(dāng)x=e時(shí),函數(shù)f(x)取得最小值
.
.綜上可知,當(dāng)a≤0時(shí),函數(shù)f(x)在區(qū)間(0,e]上無(wú)最小值;
當(dāng)0<a<e時(shí),函數(shù)f(x)在區(qū)間(0,e]上的最小值為lna;
當(dāng)a≥e時(shí),函數(shù)f(x)在區(qū)間(0,e]上的最小值為
.
(2)∵g(x)=(lnx-1)e
x+x,x∈(0,e],
∴g'(x)=(lnx-1)
′e
x+(lnx-1)(e
x)
′+1=
+(lnx-1)ex+1=(+lnx-1)ex+1.
由(1)可知,當(dāng)a=1時(shí),
f(x)=+lnx-1.
此時(shí)f(x)在區(qū)間(0,e]上的最小值為ln1=0,即
+lnx-1≥0.(10分)
當(dāng)x
0∈(0,e],
ex0>0,
+lnx0-1≥0,
∴
g′(x0)=(+lnx0-1)ex0+1≥1>0.
曲線y=g(x)在點(diǎn)x=x
0處的切線與y軸垂直等價(jià)于方程g'(x
0)=0有實(shí)數(shù)解.(13分)
而g'(x
0)>0,即方程g'(x
0)=0無(wú)實(shí)數(shù)解.、故不存在x
0∈(0,e],使曲線y=g(x)在點(diǎn)x=x
0處的切線與y軸垂直.