已知m∈R,并且
1+mi
2-i
的實部和虛部相等,則m的值為
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用兩個復(fù)數(shù)代數(shù)形式的乘除法法則把所給的復(fù)數(shù)化為
2-m+(2m+1)i
5
,再根據(jù)此復(fù)數(shù)的實部和虛部相等,可得2-m=2m+1,由此求得m的值.
解答: 解:由于
1+mi
2-i
=
(1+mi)(2+i)
(2-i)(2+i)
=
2-m+(2m+1)i
5
,且此復(fù)數(shù)的實部和虛部相等,
則有 2-m=2m+1,求得m=
1
3

故答案為:
1
3
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察以下三個等式:
sin215°-sin245°+sin15°cos45°=-
1
4
,
sin220°-sin250°+sin20°cos50°=-
1
4

sin230°-sin260°+sin30°cos60°=-
1
4
;
猜想出一個反映一般規(guī)律的等式:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=xsin(2x-
π
2
)cos(2x+
π
2
)的導(dǎo)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=1”是“直線x-my=1和直線x+my=0互相垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=cos2x-2
3
sinxcosx,下列命題:
①若x1,x2滿足x1-x2=π,則f(x1)=f(x2)成立;
②f(x)在區(qū)間[-
π
6
,
π
3
]上單調(diào)遞增;
③函數(shù)f(x)的圖象關(guān)于點(
π
12
,0)成中心對稱;
④將函數(shù)f(x)的圖象向左平移
12
個單位后將與y=2sin2x的圖象重合.
其中正確的命題序號
 
(注:把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={1,x,-1},B={-1,1-x}.
(1)若A∩B={1,-1},求x.
(2)若A∪B={1,-1,
1
2
},求A∩B.
(3)若B⊆A,求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程sinx+
3
cosx+a=0 在[0,2π)內(nèi)有兩個相異的實數(shù)解α、β,求實數(shù)a的取值范圍及α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

符號[x]表示不超過x的最大整數(shù),如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x],則  下列命題:
①函數(shù)f(x)的定義域為R,值域為[0,1]; 
②方程f(x)=
1
x
有無數(shù)多個解;
③函數(shù)f(x)是周期函數(shù);
④函數(shù)f(x)是增函數(shù).
其中正確的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線性變換f對應(yīng)的矩陣M=
02
1-1
,線性變換g對應(yīng)的矩陣N的屬于特征值λ=-1的一個特征向量
ξ
=
1
-1
,向量
α
=
1
2
在線性變換g作用下得到的像為
β
=
8
4

(1)求矩陣M的逆矩陣;
(2)求矩陣N;
(3)已知曲線C依次作線性變換f和g,得到曲線C′:x+5y+4=0,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案