【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差x(℃)

8

11

12

13

10

發(fā)芽數(shù)y(顆)

16

25

26

30

23

設農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(注: ,
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關于x的線性回歸方程 ;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

【答案】
(1)解:設抽到不相鄰兩組數(shù)據(jù)為事件A,因為從5組數(shù)據(jù)中選取組數(shù)據(jù)共有10種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據(jù)的情況有4種,

所以P(A)=1﹣0.4=0.6.

故選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率是0.6


(2)解:由數(shù)據(jù),求得 = (11+13+12)=12, = (25+30+26)=27,

由公式求得 = = = , =﹣3.

所以關于x的線性回歸方程為y= x﹣3


(3)解:當x=10時,y= x﹣3=22,|22﹣23|<2,

同樣,當x=8時,y= x﹣3=17,|17﹣16|<2.

所以,該研究所得到的線性回歸方程是可靠的


【解析】(1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有4種.根據(jù)等可能事件的概率做出結果.(2)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.(3)根據(jù)估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,就認為得到的線性回歸方程是可靠的,根據(jù)求得的結果和所給的數(shù)據(jù)進行比較,得到所求的方程是可靠的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的零點;
(2)若實數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,.數(shù)列滿足,,且

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),,使,,)成等差數(shù)列,若存在,求出所有滿足條件的,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣1.
(1)對于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求實數(shù)m的取值范圍;
(2)若對任意實數(shù)x1∈[1,2].存在實數(shù)x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個不同的非零實根x1 , x2
(1)求證:x1+x2<﹣2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為5,雙曲線 的左頂點為A,若雙曲線一條漸近線與直線AM平行,則實數(shù)a等于(
A.
B.
C.3
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數(shù)f(x)= cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當x∈[0, ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列不等式:
,



照此規(guī)律,第五個不等式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x﹣y+1=0,當x= 時,y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案