【題目】函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個不同的非零實(shí)根x1 , x2
(1)求證:x1+x2<﹣2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范圍.

【答案】
(1)證明:由方程g(x)=bx2+2ax+b=0有兩個不同的非零實(shí)根,

得△=4a2﹣4b2>0,

因此a>b>0,

所以 >1;

所以x1+x2= <﹣2


(2)解:由(1)知x1x2=1,

f(x1)+f(x2)+3a

=aln[x12x22+(x12+x22)+1]+b(x1+x2)+3a

=aln[(x12+x22)+2]+b(x1+x2)+3a

=aln[(x1+x22]+b(x1+x2)+3a

=2aln +a,

由f(x1)+f(x2)+3a﹣λb=0得λ= ln + ,

設(shè)t= >2,則λ=tlnt+ 是增函數(shù).

因此λ>2ln2+1


【解析】(1)由方程g(x)=0有兩個不同的非零實(shí)根x1 , x2 , 可得 >1,結(jié)合韋達(dá)定理可得x1+x2<﹣2;(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+3a﹣λb=0,則λ= ln + ,進(jìn)而可得λ的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=2AA1 , ∠ABC=90°,D是BC的中點(diǎn).

(1)求證:A1B∥平面ADC1;
(2)求二面角C1﹣AD﹣C的余弦值;
(3)試問線段A1B1上是否存在點(diǎn)E,使AE與DC1成60°角?若存在,確定E點(diǎn)位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在上學(xué)路上要經(jīng)過、三個帶有紅綠燈的路口.已知他在、、三個路口遇到紅燈的概率依次是、、,遇到紅燈時停留的時間依次是秒、秒、秒,且在各路口是否遇到紅燈是相互獨(dú)立的.

(1)求這名同學(xué)在上學(xué)路上在第三個路口首次遇到紅燈的概率;,

(2)求這名同學(xué)在上學(xué)路上因遇到紅燈停留的總時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(1)求證:PA∥平面QBC;
(2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時,求| + |的取值范圍;
(2)若g(x)=( + ,求當(dāng)k為何值時,g(x)的最小值為﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差x(℃)

8

11

12

13

10

發(fā)芽數(shù)y(顆)

16

25

26

30

23

設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(注: ,
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時,f(x)=|2x﹣1|,那么當(dāng)x>2時,函數(shù)f(x)的遞減區(qū)間是(
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中

(1)求的值;

(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①函數(shù)fx)=sin2xcos2x的最小正周期是;

②在等比數(shù)列〔}中,若,則a3=士2

③設(shè)函數(shù)fx)=,若有意義,則

④平面四邊形ABCD中, ,則四邊形ABCD

菱形. 其中所有的真命題是:( )

A. ①②④ B. ①④ C. ③④ D. ①②③

查看答案和解析>>

同步練習(xí)冊答案