精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=AC=1,∠ACD=90°,將它沿對角線AC折起,使AB與CD成60°角,則此時B、D的距離是 (  )
A、2或
3
B、2或
2
C、2
D、1或
2
分析:先利用向量的加法將向量
BD
轉(zhuǎn)化成
BD
=
BA
+
AC
+
CD
,等式兩邊進行平方,求出向量
BD
的模即可.
解答:解:∵∠ACD=90°,∴
AC
CD
=0.
同理
BA
AC
=0.
∵AB和CD成60°角,∴<
BA
CD
>=60°或120°.
BD
=
BA
+
AC
+
CD
,
BD2
=
BA2
+
AC2
+
CD2
+2
AB
CD

=3+2×1×1×cos<
BA
,
CD

=
4(?
BA
CD
>=60°)
2(?
BA
CD
>=120°).

∴|
BD
|=2或
2
,即B、D間的距離為2或
2

故選B.
點評:本小題主要考查異面直線所成的角,以及數(shù)量積表示兩個向量的夾角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是( 。
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
AB
-
AD
=
BD
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD,
AD
=a
,
AB
=b
,M為AB的中點,點N在DB上,且
DN
=t
NB

(1)當t=2時,證明:M、N、C三點共線;
(2)若M、N、C三點共線,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,
AB
=
a
,
AD
=
b
,
AN
=3
NC
,則
BN
=
-
1
4
a
+
3
4
b
-
1
4
a
+
3
4
b
(用
a
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,若
OA
=
a
OB
=
b
則下列各表述是正確的為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形OABC中,點O是原點,點A和點C的坐標分別是(3,0)、(1,3),點D是線段AB上的中點.
(1)求AB所在直線的一般式方程;
(2)求直線CD與直線AB所成夾角的余弦值.

查看答案和解析>>

同步練習冊答案