【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長(zhǎng),隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),按照共6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長(zhǎng)的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動(dòng)達(dá)人”.
表1:男生
時(shí)長(zhǎng) | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時(shí)長(zhǎng) | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運(yùn)動(dòng)時(shí)長(zhǎng)不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).
每周運(yùn)動(dòng)的時(shí)長(zhǎng)小于15小時(shí) | 每周運(yùn)動(dòng)的時(shí)長(zhǎng)不小于15小時(shí) | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
【答案】(1);(2)填表見(jiàn)解析,沒(méi)有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).
【解析】
(1)由題可知共有個(gè)基本事件,“運(yùn)動(dòng)達(dá)人”的可能結(jié)果為個(gè),
求得概率即可;
(2)根據(jù)題意列出列聯(lián)表,代入公式計(jì)算結(jié)果,然后判斷即可.
(1)每周運(yùn)動(dòng)的時(shí)長(zhǎng)在中的男生有4人,在中的男生有2人,
則共有個(gè)基本事件,
其中中至少有1人被抽到的可能結(jié)果有
個(gè),
所以抽到“運(yùn)動(dòng)達(dá)人”的概率為;
(2)每周運(yùn)動(dòng)的時(shí)長(zhǎng)小于15小時(shí)的男生有26人,女生有16人;
每周運(yùn)動(dòng)的時(shí)長(zhǎng)不小于15小時(shí)的男生有14人,女生有24人.
可得下列列聯(lián)表:
每周運(yùn)動(dòng)的時(shí)長(zhǎng)小于15小時(shí) | 每周運(yùn)動(dòng)的時(shí)長(zhǎng)不小于15小時(shí) | 總計(jì) | |
男生 | 26 | 14 | 40 |
女生 | 16 | 24 | 40 |
總計(jì) | 42 | 38 | 80 |
所以沒(méi)有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問(wèn)用數(shù)字0,1,2,3,4,5,6,7組成的無(wú)重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個(gè).
A. 71B. 66C. 59D. 53
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,書(shū)中有一問(wèn)題:“今有方物一束,外周一匝有三十二枚,問(wèn)積幾何?”,該著作中提出了一種解決此問(wèn)題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過(guò)對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時(shí),均可采用此方法求解,如圖是解決這類問(wèn)題的程序框圖,若輸入,則輸出的結(jié)果為( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】算籌是在珠算發(fā)明以前我國(guó)獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國(guó)古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計(jì)數(shù)法中,以“縱式”和“橫式”兩種方式來(lái)表示數(shù)字,如圖:
表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個(gè)數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點(diǎn)M,使得CM∥平面DA?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生物興趣小組對(duì)冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請(qǐng)根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò),則認(rèn)為得到的線性回歸方程是可靠的,問(wèn)得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計(jì)算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中真命題的個(gè)數(shù)是
中,是的三內(nèi)角A,B,C成等差數(shù)列的充要條件;
若“,則”的逆命題為真命題;
是或充分不必要條件;
是的充要條件.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年5月,重慶市育才中學(xué)開(kāi)展了“最美教室”文化布置評(píng)比活動(dòng),工作人員隨機(jī)抽取了16間教室進(jìn)行量化評(píng)估,其中評(píng)分不低于9分的教室評(píng)為優(yōu)秀,以下表格記錄了它們的評(píng)分情況:
分?jǐn)?shù)段 | ||||
教室間數(shù) | 1 | 3 | 8 | 4 |
(1)現(xiàn)從16間教室隨機(jī)抽取3個(gè),求至多有1個(gè)優(yōu)秀的概率;
(2)以這16間教室評(píng)分?jǐn)?shù)據(jù)估計(jì)全校教室的布置情況,若從全校所有教室中任選3個(gè),記表示抽到優(yōu)秀的教室個(gè)數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù),).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求使得恒成立的最小整數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com